IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v22y2003i2p173-186.html
   My bibliography  Save this article

Numerical Solutions to Some Optimal Control Problems Arising from Innovation Diffusion

Author

Listed:
  • Luigi De Cesare

    ()

  • Andrea Di Liddo
  • Stefania Ragni

Abstract

In this paper we propose a numerical approach for the solution of some optimalcontrol problems arising in the field of marketing decision models. Inparticular, we account for a specific innovation diffusion model. A numericalapproach may be useful to investigate some features of state variables andparameters of interest. The discrete problem is solved by the SimulatedAnnealing method and the resulting numerical scheme is applied to some testcases. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Luigi De Cesare & Andrea Di Liddo & Stefania Ragni, 2003. "Numerical Solutions to Some Optimal Control Problems Arising from Innovation Diffusion," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 173-186, October.
  • Handle: RePEc:kap:compec:v:22:y:2003:i:2:p:173-186
    DOI: 10.1023/A:1026185814203
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026185814203
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    2. Vijay Mahajan & Robert A. Peterson, 1978. "Innovation Diffusion in a Dynamic Potential Adopter Population," Management Science, INFORMS, vol. 24(15), pages 1589-1597, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:22:y:2003:i:2:p:173-186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.