IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp26-37.html
   My bibliography  Save this article

Forecasting natural gas consumption

Author

Listed:
  • Soldo, Božidar

Abstract

Publishing papers in the area of forecasting natural gas consumption has begun in the middle of last century and led to a tremendous surge in research activities in the past decade. This paper presents a state-of-the-art survey of forecasting natural gas consumption. Purpose of this paper is to provide analysis and synthesis of published research in this area from beginning to the end of 2010, insights on applied area, used data, models and tools to achieve usable results, in order to be helpful base for future researchers.

Suggested Citation

  • Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:26-37
    DOI: 10.1016/j.apenergy.2011.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006982
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durmayaz, Ahmet & Kadıoǧlu, Mikdat & Şen, Zekai, 2000. "An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul," Energy, Elsevier, vol. 25(12), pages 1245-1256.
    2. Marek Brabec & Ondrej Konár & Marek Malý & Emil Pelikán & Jirí Vondráček, 2009. "A statistical model for natural gas standardized load profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 123-139.
    3. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
    4. Vondrácek, Jirí & Pelikán, Emil & Konár, Ondrej & Cermáková, Jana & Eben, Krystof & Malý, Marek & Brabec, Marek, 2008. "A statistical model for the estimation of natural gas consumption," Applied Energy, Elsevier, vol. 85(5), pages 362-370, May.
    5. Liu, Lon-Mu & Lin, Maw-Wen, 1991. "Forecasting residential consumption of natural gas using monthly and quarterly time series," International Journal of Forecasting, Elsevier, vol. 7(1), pages 3-16, May.
    6. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
    7. Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
    8. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
    9. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    10. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    11. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    12. Siemek, Jakub & Nagy, Stanislaw & Rychlicki, Stanislaw, 2003. "Estimation of natural-gas consumption in Poland based on the logistic-curve interpretation," Applied Energy, Elsevier, vol. 75(1-2), pages 1-7, May.
    13. Tahat, M. A. & Al-Hinai, H. & Probert, S. D., 2002. "Performance of a low-energy-consumption house experiencing a Mediterranean climate," Applied Energy, Elsevier, vol. 71(1), pages 1-13, January.
    14. Douglas B. Reynolds & Marek Kolodziej, 2009. "North American Natural Gas Supply Forecast: The Hubbert Method Including the Effects of Institutions," Energies, MDPI, Open Access Journal, vol. 2(2), pages 1-38, May.
    15. Jiang, BinBin & Wenying, Chen & Yuefeng, Yu & Lemin, Zeng & Victor, David, 2008. "The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL," Energy Policy, Elsevier, vol. 36(9), pages 3286-3299, September.
    16. Lee, Ray-Shine & Singh, Nirvikar, 1994. "Patterns in Residential Gas and Electricity Consumption: An Econometric Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 233-241, April.
    17. Thaler, Marko & Grabec, Igor & Poredoš, Alojz, 2005. "Prediction of energy consumption and risk of excess demand in a distribution system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 46-53.
    18. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    19. Beierlein, James G & Dunn, James W & McConnon, James C, Jr, 1981. "The Demand for Electricity and Natural Gas in the Northeastern United States," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 403-408, August.
    20. S. M. Tinic & B. M. Harnden & C. T. L. Janssen, 1973. "Estimation of Rural Demand for Natural Gas," Management Science, INFORMS, vol. 20(4-Part-II), pages 604-616, December.
    21. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    22. Huntington, Hillard G., 2007. "Industrial natural gas consumption in the United States: An empirical model for evaluating future trends," Energy Economics, Elsevier, vol. 29(4), pages 743-759, July.
    23. Potocnik, Primoz & Thaler, Marko & Govekar, Edvard & Grabec, Igor & Poredos, Alojz, 2007. "Forecasting risks of natural gas consumption in Slovenia," Energy Policy, Elsevier, vol. 35(8), pages 4271-4282, August.
    24. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    25. Herbert, John H. & Sitzer, Scott & Eades-Pryor, Yvonne, 1987. "A statistical evaluation of aggregate monthly industrial demand for natural gas in the U.S.A," Energy, Elsevier, vol. 12(12), pages 1233-1238.
    26. Bartels, Robert & Fiebig, Denzil G & Nahm, Daehoon, 1996. "Regional End-Use Gas Demand in Australia," The Economic Record, The Economic Society of Australia, vol. 72(219), pages 319-331, December.
    27. Ernst R. Berndt & G. Campbell Watkins, 1977. "Demand for Natural Gas: Residential and Commercial Markets in Ontario and British Columbia," Canadian Journal of Economics, Canadian Economics Association, vol. 10(1), pages 97-111, February.
    28. Yoo, Seung-Hoon & Lim, Hea-Jin & Kwak, Seung-Jun, 2009. "Estimating the residential demand function for natural gas in Seoul with correction for sample selection bias," Applied Energy, Elsevier, vol. 86(4), pages 460-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    2. Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
    3. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    4. Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
    5. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2016. "Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States," Energy, Elsevier, vol. 94(C), pages 533-541.
    6. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    7. Ackah, Ishmael, 2015. "Accounting for the effect of exogenous non-Economic variables on natural gas demand in oil producing African countries," MPRA Paper 81553, University Library of Munich, Germany.
    8. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    9. repec:eee:appene:v:201:y:2017:i:c:p:219-239 is not listed on IDEAS
    10. Nana Geng & Yong Zhang & Yixiang Sun & Yunjian Jiang & Dandan Chen, 2015. "Forecasting China’s Annual Biofuel Production Using an Improved Grey Model," Energies, MDPI, Open Access Journal, vol. 8(10), pages 1-20, October.
    11. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
    12. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    13. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-17, September.
    14. repec:gam:jeners:v:10:y:2017:i:12:p:2047-:d:121471 is not listed on IDEAS
    15. repec:eee:eneeco:v:70:y:2018:i:c:p:357-381 is not listed on IDEAS
    16. Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.
    17. repec:gam:jeners:v:10:y:2017:i:6:p:781-:d:100628 is not listed on IDEAS
    18. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.
    19. Serli Kiremitciyan & Ahmet Goncu & Tolga Umut Kuzubas, 2014. "A Comparison of Stochastic Models of Natural Gas Consumption," Working Papers 2014/10, Bogazici University, Department of Economics.
    20. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    21. repec:gam:jeners:v:10:y:2017:i:11:p:1879-:d:119196 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:26-37. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.