IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i4p659-678.html
   My bibliography  Save this article

A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers

Author

Listed:
  • Brabec, Marek
  • Konár, Ondrej
  • Pelikán, Emil
  • Malý, Marek

Abstract

This study deals with the description and prediction of the daily consumption of natural gas at the level of individual customers. Unlike traditional group averaging approaches, we are faced with the irregularities of individual consumption series posed by inter-individual heterogeneity, including zeros, missing data, and abrupt consumption pattern changes. Our model is of the nonlinear regression type, with individual customer-specific parameters that, nevertheless, have a common distribution corresponding to the nonlinear mixed effects model framework. It is advantageous to build the model conditionally. The first condition, whether a particular customer has consumed or not, is modeled as a consumption status in an individual fashion. The prediction performance of the proposed model is demonstrated using a real dataset of 62 individual customers, and compared with two more traditional approaches: ARIMAX and ARX.

Suggested Citation

  • Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:659-678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00097-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    2. Alves da Silva, Alexandre P. & Ferreira, Vitor H. & Velasquez, Roberto M.G., 2008. "Input space to neural network based load forecasters," International Journal of Forecasting, Elsevier, vol. 24(4), pages 616-629.
    3. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    4. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    5. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    6. Bailey, Jeffrey, 2000. "Load Profiling for Retail Choice: Examining a Complex and Crucial Component of Settlement," The Electricity Journal, Elsevier, vol. 13(10), pages 69-74, December.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    9. Bauwens, Luc & Fiebig, Denzil G & Steel, Mark F J, 1994. "Estimating End-Use Demand: A Bayesian Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 221-231, April.
    10. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    11. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters,in: Regional Climate Change and Variability, chapter 1 Edward Elgar Publishing.
    12. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    13. Vondrácek, Jirí & Pelikán, Emil & Konár, Ondrej & Cermáková, Jana & Eben, Krystof & Malý, Marek & Brabec, Marek, 2008. "A statistical model for the estimation of natural gas consumption," Applied Energy, Elsevier, vol. 85(5), pages 362-370, May.
    14. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    15. Bartels, Robert & Fiebig, Denzil G & Nahm, Daehoon, 1996. "Regional End-Use Gas Demand in Australia," The Economic Record, The Economic Society of Australia, vol. 72(219), pages 319-331, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    2. Oliver, Ronan & Duffy, Aidan & Enright, Bernard & O'Connor, Rodger, 2017. "Forecasting peak-day consumption for year-ahead management of natural gas networks," Utilities Policy, Elsevier, vol. 44(C), pages 1-11.
    3. Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
    4. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    5. Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.
    6. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    7. Haben, Stephen & Ward, Jonathan & Vukadinovic Greetham, Danica & Singleton, Colin & Grindrod, Peter, 2014. "A new error measure for forecasts of household-level, high resolution electrical energy consumption," International Journal of Forecasting, Elsevier, vol. 30(2), pages 246-256.
    8. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:659-678. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.