IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v91y2015icp47-63.html
   My bibliography  Save this article

An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data

Author

Listed:
  • Azadeh, A.
  • Asadzadeh, S.M.
  • Mirseraji, G.H.
  • Saberi, M.

Abstract

This study introduces an optimum training and forecasting approach for natural gas consumption forecasting and estimation in cognitive and noisy environments by an integrated approach. The approach is based on emotional learning based fuzzy inference system (ELFIS), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and conventional regression. Results are compared to show the suitability of the optimum training model in noisy and uncertain environment. The designated forecasting models use standard inputs and gas demand as their output. The training approach utilizes intelligent and emotional learning mechanism. Furthermore, analysis of variance (ANOVA), mean absolute percentage error (MAPE), normalized mean square error (NMSE) and Duncan's multiple range test (DMRT) are used to test a set of hypothesis and to select the optimum training model. Applicability and superiority of the approach is shown through applying the above models on actual gas consumption data in Iran from 1973 to 2006. The approach is capable of modeling sharp drops or jumps in consumption with appropriate cognitive and emotional signals. This is the first study that uses an integrated approach for optimum training of gas consumption estimation with noisy and cognitive data.

Suggested Citation

  • Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
  • Handle: RePEc:eee:tefoso:v:91:y:2015:i:c:p:47-63
    DOI: 10.1016/j.techfore.2014.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162514000407
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
    2. Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
    3. Reddy, B. S. & Balachandra, P., 2003. "Integrated energy-environment-policy analysis -- a case study of India," Utilities Policy, Elsevier, vol. 11(2), pages 59-73, June.
    4. Kadoshin, Shiro & Nishiyama, Takashi & Ito, Toshihide, 2000. "The trend in current and near future energy consumption from a statistical perspective," Applied Energy, Elsevier, vol. 67(4), pages 407-417, December.
    5. Persaud, A. Jai & Kumar, Uma, 2001. "An eclectic approach in energy forecasting: a case of Natural Resources Canada's (NRCan's) oil and gas outlook," Energy Policy, Elsevier, vol. 29(4), pages 303-313, March.
    6. Chow, Larry Chuen-ho, 2001. "A study of sectoral energy consumption in Hong Kong (1984-97) with special emphasis on the household sector," Energy Policy, Elsevier, vol. 29(13), pages 1099-1110, November.
    7. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    8. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    9. Siemek, Jakub & Nagy, Stanislaw & Rychlicki, Stanislaw, 2003. "Estimation of natural-gas consumption in Poland based on the logistic-curve interpretation," Applied Energy, Elsevier, vol. 75(1-2), pages 1-7, May.
    10. Adil Bagirov & Conny Clausen & Michael Kohler, 2010. "An algorithm for the estimation of a regression function by continuous piecewise linear functions," Computational Optimization and Applications, Springer, vol. 45(1), pages 159-179, January.
    11. Yoo, Seung-Hoon & Lim, Hea-Jin & Kwak, Seung-Jun, 2009. "Estimating the residential demand function for natural gas in Seoul with correction for sample selection bias," Applied Energy, Elsevier, vol. 86(4), pages 460-465, April.
    12. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    13. Saab, Samer & Badr, Elie & Nasr, George, 2001. "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon," Energy, Elsevier, vol. 26(1), pages 1-14.
    14. Chi, K.C. & Reiner, D.M. & Nuttall, W.J., 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Cambridge Working Papers in Economics 0922, Faculty of Economics, University of Cambridge.
    15. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    16. Hiroshi Konno & Yoshihiro Takaya, 2010. "Multi-step methods for choosing the best set of variables in regression analysis," Computational Optimization and Applications, Springer, vol. 46(3), pages 417-426, July.
    17. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    18. Azadeh, A. & Ghaderi, S.F. & Sohrabkhani, S., 2008. "A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran," Energy Policy, Elsevier, vol. 36(7), pages 2637-2644, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    2. repec:gam:jeners:v:10:y:2017:i:6:p:781-:d:100628 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:91:y:2015:i:c:p:47-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.