IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1687-d154918.html
   My bibliography  Save this article

A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost

Author

Listed:
  • Pin Li

    (School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Research Center for Energy Economy and Management, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jin-Suo Zhang

    (School of Economics and Management, Yan’an University, Yan’an 716000, China)

Abstract

Energy supply security is a significant part of China’s security, directly influencing national security and economic and social sustainability. To ensure both China’s present and the future energy supply, it is essential to evaluate and forecast the energy supply level. However, forecasting the energy supply security level is difficult because energy supply security is dynamic, many factors affect it and there is a lack of accurate and comprehensive data. Therefore, based on previous studies and according to the characteristics of energy supply and the social development of China, first, the authors apply a comprehensive evaluation method to quantify the energy supply security. Second, based on the ARIMA-XGBoost hybrid model, the authors create two novel approaches for forecasting the energy supply security level of China. The authors find that: (1) energy supply security is dynamic, and green development has become the theme of China’s energy development. The energy industry urgently needs to provide more high-quality ecological energy products to meet the people’s desire for a beautiful ecological environment; (2) since the mean absolute percentage errors are below 4.5% when forecasting the energy supply security indicators, the ARIMA-XGBoost hybrid model is more accurate for forecasting China’s energy supply security level and (3) the security level of China’s energy supply has developed periodic features; the ESSI can improve by about 0.2 every five years, but, due to the low starting point and multiple types of constraints, it is difficult to reach the safety level in a short time.

Suggested Citation

  • Pin Li & Jin-Suo Zhang, 2018. "A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost," Energies, MDPI, vol. 11(7), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1687-:d:154918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiriyama, Eriko & Kajikawa, Yuya, 2014. "A multilayered analysis of energy security research and the energy supply process," Applied Energy, Elsevier, vol. 123(C), pages 415-423.
    2. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    3. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    4. Ediger, Volkan S. & Akar, Sertac & Ugurlu, Berkin, 2006. "Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model," Energy Policy, Elsevier, vol. 34(18), pages 3836-3846, December.
    5. Abdel-Aal, R.E. & Al-Garni, A.Z. & Al-Nassar, Y.N., 1997. "Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks," Energy, Elsevier, vol. 22(9), pages 911-921.
    6. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali & Mahendra Dev, S., 2017. "Sustainable energy security for India: An assessment of the energy supply sub-system," Energy Policy, Elsevier, vol. 103(C), pages 127-144.
    7. Ren, Jingzheng & Sovacool, Benjamin K., 2014. "Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics," Energy, Elsevier, vol. 76(C), pages 838-849.
    8. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    9. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    10. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    11. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    12. Lin Ding & Zhenfeng Shao & Hanchao Zhang & Cong Xu & Dewen Wu, 2016. "A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    13. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    14. von Hippel, David & Gulidov, Ruslan & Kalashnikov, Victor & Hayes, Peter, 2011. "Northeast Asia regional energy infrastructure proposals," Energy Policy, Elsevier, vol. 39(11), pages 6855-6866.
    15. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    16. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    17. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    18. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    19. Franz Wirl, 1995. "The exploitation of fossil fuels under the threat of global warming and carbon taxes: A dynamic game approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(4), pages 333-352, June.
    20. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    21. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    22. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    23. Duenas, Pablo & Ramos, Andres & Tapia-Ahumada, Karen & Olmos, Luis & Rivier, Michel & Pérez-Arriaga, Jose-Ignacio, 2018. "Security of supply in a carbon-free electric power system: The case of Iceland," Applied Energy, Elsevier, vol. 212(C), pages 443-454.
    24. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "A framework for evaluating Singapore’s energy security," Applied Energy, Elsevier, vol. 148(C), pages 314-325.
    25. Castro, Manuel, 2017. "Assessing the risk profile to security of supply in the electricity market of Great Britain," Energy Policy, Elsevier, vol. 111(C), pages 148-156.
    26. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    27. Narula, Kapil & Reddy, B. Sudhakara, 2015. "Three blind men and an elephant: The case of energy indices to measure energy security and energy sustainability," Energy, Elsevier, vol. 80(C), pages 148-158.
    28. Sovacool, Benjamin K. & Mukherjee, Ishani & Drupady, Ira Martina & D’Agostino, Anthony L., 2011. "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Elsevier, vol. 36(10), pages 5846-5853.
    29. Bambawale, Malavika Jain & Sovacool, Benjamin K., 2011. "China's energy security: The perspective of energy users," Applied Energy, Elsevier, vol. 88(5), pages 1949-1956, May.
    30. Von Hippel, David & Savage, Timothy & Hayes, Peter, 2011. "Introduction to the Asian Energy Security project: Project organization and methodologies," Energy Policy, Elsevier, vol. 39(11), pages 6712-6718.
    31. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    32. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    33. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    34. Li, Yingzhu & Shi, Xunpeng & Yao, Lixia, 2016. "Evaluating energy security of resource-poor economies: A modified principle component analysis approach," Energy Economics, Elsevier, vol. 58(C), pages 211-221.
    35. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Comparing aggregating methods for constructing the composite environmental index: An objective measure," Ecological Economics, Elsevier, vol. 59(3), pages 305-311, September.
    36. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali, 2017. "Sustainable Energy Security for India: An assessment of energy demand sub-system," Applied Energy, Elsevier, vol. 186(P2), pages 126-139.
    37. Le Coq, Chloé & Paltseva, Elena, 2009. "Measuring the security of external energy supply in the European Union," Energy Policy, Elsevier, vol. 37(11), pages 4474-4481, November.
    38. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    39. Thomas B. Johansson & Nebojsa Nakicenovic, 2012. "The Global Energy Assessment," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, October.
    40. Mohsin, M. & Zhou, P. & Iqbal, N. & Shah, S.A.A., 2018. "Assessing oil supply security of South Asia," Energy, Elsevier, vol. 155(C), pages 438-447.
    41. Kapil Narula & B. Sudhakara Reddy & Shonali Pachauri, 2015. "Sustainable energy security for India: An assessment of energy demand sub-system," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-013, Indira Gandhi Institute of Development Research, Mumbai, India.
    42. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    43. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
    44. Kapil Narula & B. Sudhakara Reddy, 2014. "Three blind men and elephant: The Case of energy indices to measure energy security and sustainability," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2014-024, Indira Gandhi Institute of Development Research, Mumbai, India.
    45. Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
    46. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    47. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    48. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    49. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    50. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    51. Kemmler, Andreas & Spreng, Daniel, 2007. "Energy indicators for tracking sustainability in developing countries," Energy Policy, Elsevier, vol. 35(4), pages 2466-2480, April.
    52. Turton, Hal & Barreto, Leonardo, 2006. "Long-term security of energy supply and climate change," Energy Policy, Elsevier, vol. 34(15), pages 2232-2250, October.
    53. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    54. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    55. Sovacool, Benjamin K. & Walter, Götz, 2018. "Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment," Energy, Elsevier, vol. 142(C), pages 1074-1082.
    56. Debin Fang & Shanshan Shi & Qian Yu, 2018. "Evaluation of Sustainable Energy Security and an Empirical Analysis of China," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin Li & Jinsuo Zhang, 2023. "China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model," Energies, MDPI, vol. 16(7), pages 1-22, March.
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Xiaoliang Wang & Yong Kang & Mengda Zhang & Miao Yuan & Deng Li, 2018. "The Effects of the Downstream Contraction Ratio of Organ-Pipe Nozzle on the Pressure Oscillations of Self-Resonating Waterjets," Energies, MDPI, vol. 11(11), pages 1-12, November.
    4. Xintong Zhang & Yuncai Ning & Cuijie Lu, 2022. "Evaluation of Coal Supply and Demand Security in China and Associated Obstacle Factors," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    5. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Sunghyeon Choi & Jin Hur, 2020. "An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Photovoltaic Power Output Prediction Based on k -Fold Cross-Validation and an Ensemble Model," Energies, MDPI, vol. 12(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    3. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    5. Debin Fang & Shanshan Shi & Qian Yu, 2018. "Evaluation of Sustainable Energy Security and an Empirical Analysis of China," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    6. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    7. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    8. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).
    9. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    10. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    11. Adinda Franky Nelwan & Rinaldy Dalimi & Chairul Hudaya, 2021. "A New Formula to Quantify the National Energy Security of the World s Top Ten Most Populous Nations," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 394-406.
    12. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    13. Zhenyu Zhao & Huijia Yang, 2020. "Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    14. Le, Thai-Ha & Chang, Youngho & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki, 2019. "Energy insecurity in Asia: A multi-dimensional analysis," Economic Modelling, Elsevier, vol. 83(C), pages 84-95.
    15. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    16. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    17. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    18. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    19. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).
    20. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1687-:d:154918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.