IDEAS home Printed from
   My bibliography  Save this paper

Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis


  • Chi, K.C.
  • Reiner, D.M.
  • Nuttall, W.J.


We present a dynamic model of the indigenous natural gas industry in the UK. The model has been built using a system dynamics approach. Using the model several scenarios have been analysed. We found that management of the supply-side policy alone cannot substantially postpone the discovery, production and consumption peak. We also found that the dynamics of the main variables, namely, exploration, production and consumption, are sensitive to initial demand conditions. Postponing the onset of gas price increases can therefore be achieved more effectively through efforts to reduce demand growth. One might expect that a low taxation policy would encourage more exploration and production of gas and thereby stimulate higher consumption rates. Instead, there was no overall net effect on production and consumption in the long term. The depletion effect on cost of exploration acts as counterbalance to low taxation policy. Depletion effect causes cost and thus price to rise further which depress consumption rate. The advances in exploration and production technology can delay the peak of exploration, production and consumption. Technological improvements mean lower cost of exploration and production which pressure down long-term pattern of price dynamics.

Suggested Citation

  • Chi, K.C. & Reiner, D.M. & Nuttall, W.J., 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Cambridge Working Papers in Economics 0922, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0922

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    More about this item


    System Dynamics; Simulation Modelling; natural gas; energy policy; long-term policy analysis;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.