IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v75y2003i1-2p1-7.html
   My bibliography  Save this article

Estimation of natural-gas consumption in Poland based on the logistic-curve interpretation

Author

Listed:
  • Siemek, Jakub
  • Nagy, Stanislaw
  • Rychlicki, Stanislaw

Abstract

This paper describes the possible scenario of the development of the gas sector in Poland. An adaptation of the Hubbert model is implemented to the Polish situation based upon the Starzman modification. The model presented describes hypothetical natural-gas demand, based on average trend of the economy development during recent decades; the model considers natural production/demand maxima of energy carriers. The prognosis is loaded with an error resulting from the use of average data related to yearly increases of the national gross product. The adapted model expresses good compatibility with the natural-gas demand for the period 1995-2000. However, the error of prognosis may reach 20%. The simple structure of the model enables the possibility of yearly updating, and eventual correction of the natural-gas demand. In cases of untypical changes of the economy growth rate (long stagnation, extreme long and accelerated development), the prognosis error may increase.

Suggested Citation

  • Siemek, Jakub & Nagy, Stanislaw & Rychlicki, Stanislaw, 2003. "Estimation of natural-gas consumption in Poland based on the logistic-curve interpretation," Applied Energy, Elsevier, vol. 75(1-2), pages 1-7, May.
  • Handle: RePEc:eee:appene:v:75:y:2003:i:1-2:p:1-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00013-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azadeh, A. & Asadzadeh, S.M. & Saberi, M. & Nadimi, V. & Tajvidi, A. & Sheikalishahi, M., 2011. "A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE," Applied Energy, Elsevier, vol. 88(11), pages 3850-3859.
    2. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    3. Chedid, R. & Kobrosly, M. & Ghajar, R., 2007. "A supply model for crude oil and natural gas in the Middle East," Energy Policy, Elsevier, vol. 35(4), pages 2096-2109, April.
    4. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    5. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    6. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
    7. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
    8. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
    9. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    10. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-17, September.
    11. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    12. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    13. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
    14. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
    15. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    16. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.
    17. repec:eee:rensus:v:88:y:2018:i:c:p:297-325 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:75:y:2003:i:1-2:p:1-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.