IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i8p3923-3939.html
   My bibliography  Save this article

A hybrid machine learning approach for forecasting residential electricity consumption: A case study in Singapore

Author

Listed:
  • Hui Yun Rebecca Neo
  • Nyuk Hien Wong
  • Marcel Ignatius
  • Kai Cao

Abstract

Ensuring effective forecasting of buildings' energy consumption is crucial in establishing a greater understanding and improvement of buildings' energy efficiency. In Singapore, domestic electricity usage in public residential buildings takes up a significant portion of the country's annual energy consumption. Having effective forecasting approaches is thus important in supporting relevant strategies and policy making. In this research, we proposed a hybrid approach that was based on a combination of building characteristics and urban landscape variables to predict residential housing electricity usage in Singapore. XGboost was also incorporated inside the hybrid approach as the preferred machine learning approach for energy consumption predictions. To demonstrate our proposed approach's predictive strength, the performance of our proposed hybrid machine learning approach was compared with two other models, Geographically Weighted Regression (GWR) model and the Random Forest (RF) model. Results showed that our proposed hybrid model had outperformed these abovementioned approaches with higher accuracy (r 2 value of 0.9). The proposed approach had thus been effective in forecasting electricity consumption for public housing in Singapore, and it could also be utilised in other similar urban areas for future electricity consumption forecasting.

Suggested Citation

  • Hui Yun Rebecca Neo & Nyuk Hien Wong & Marcel Ignatius & Kai Cao, 2024. "A hybrid machine learning approach for forecasting residential electricity consumption: A case study in Singapore," Energy & Environment, , vol. 35(8), pages 3923-3939, December.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:8:p:3923-3939
    DOI: 10.1177/0958305X231174000
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X231174000
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X231174000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Robinson, Caleb & Dilkina, Bistra & Hubbs, Jeffrey & Zhang, Wenwen & Guhathakurta, Subhrajit & Brown, Marilyn A. & Pendyala, Ram M., 2017. "Machine learning approaches for estimating commercial building energy consumption," Applied Energy, Elsevier, vol. 208(C), pages 889-904.
    3. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    4. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Ahmad Taki & Bilal Alsheglawi, 2022. "Toward Energy-Efficient Houses Considering Social Cultural Needs in Bahrain: A New Framework Approach," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    4. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    5. Dan, Zhaohui & Song, Aoye & Yu, Xiaojun & Zhou, Yuekuan, 2024. "Electrification-driven circular economy with machine learning-based multi-scale and cross-scale modelling approach," Energy, Elsevier, vol. 299(C).
    6. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    7. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    8. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    9. Ting Jin & Rui Xu & Kunqi Su & Jinrui Gao, 2025. "A Dendritic Neural Network-Based Model for Residential Electricity Consumption Prediction," Mathematics, MDPI, vol. 13(4), pages 1-23, February.
    10. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Rajvikram Madurai Elavarasan & Umashankar Subramaniam & Saad Mekhilef & Lucian Mihet-Popa, 2021. "A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 14(24), pages 1-16, December.
    11. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Tomasz Wierzbicki, 2024. "Ecologically Friendly Building Materials: A Case Study of Clay–Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    12. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    13. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    14. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    15. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    16. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    17. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    18. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    19. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    20. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:8:p:3923-3939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.