Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
- Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
- Ben-Nakhi, Abdullatif E. & Mahmoud, Mohamed A., 2002. "Energy conservation in buildings through efficient A/C control using neural networks," Applied Energy, Elsevier, vol. 73(1), pages 5-23, September.
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goopyo Hong & Byungseon Sean Kim, 2018. "Response to Comments by Yaolin Lin and Wei Yang “Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy”. Energies 2018, 11 , 407," Energies, MDPI, vol. 11(6), pages 1-2, June.
- Miklos Kassai, 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel," Energies, MDPI, vol. 12(22), pages 1-16, November.
- Mpho J. Lencwe & SP Daniel Chowdhury & Sipho Mahlangu & Maxwell Sibanyoni & Louwrance Ngoma, 2021. "An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room," Energies, MDPI, vol. 14(16), pages 1-23, August.
- Yaolin Lin & Wei Yang, 2018. "Comments to Paper Entitled: Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy. Energies 2018, 11 , 407," Energies, MDPI, vol. 11(6), pages 1-2, June.
- Ali Bagheri & Véronique Feldheim & Christos S. Ioakimidis, 2018. "On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings," Energies, MDPI, vol. 11(4), pages 1-20, April.
- Nam-Chul Seong & Jee-Heon Kim & Wonchang Choi, 2019. "Optimal Control Strategy for Variable Air Volume Air-Conditioning Systems Using Genetic Algorithms," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
- Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
- Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
- Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
- Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
- Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
- Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
- Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
- Tomasz Szul & Sylwester Tabor & Krzysztof Pancerz, 2021. "Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set Theory (RST) to Prediction Energy Consumption for Building Heating," Energies, MDPI, vol. 14(10), pages 1-13, May.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
- Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
- O’Neill, Zheng & O’Neill, Charles, 2016. "Development of a probabilistic graphical model for predicting building energy performance," Applied Energy, Elsevier, vol. 164(C), pages 650-658.
- Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
- Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
- Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
More about this item
Keywords
data-driven; prediction; neural network; air-handling unit (AHU); supply air temperature;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:407-:d:131068. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.