IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1406-d1694718.html
   My bibliography  Save this article

Land Use, Spatial Planning, and Their Influence on Carbon Emissions: A Comprehensive Review

Author

Listed:
  • Yongmei Wang

    (Department of Land Management, School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

  • Xiangmu Jin

    (Department of Land Management, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
    Hangzhou International Urbanology Research Center (Center for Urban Governance Studies), Hangzhou 310020, China)

Abstract

Carbon emissions from land use account for a significant portion of anthropogenic carbon emissions. As an important policy instrument for regulating land use, spatial planning can shape future land patterns, thereby influencing human activities and associated carbon emissions. This review presents a scientometric analysis of important articles between 2000 and 2024 on the impacts of land use and spatial planning on carbon emissions, and it summarizes the key research topics, methods, and main consensus. Scientometric and qualitative analysis methods were used. The results showed the following: (1) The number of articles published reveals an increasing trend, especially after 2009, with China, the USA, and England paying more attention to it. (2) Studies mainly focus on four key research topics: the impacts of land use and land cover change (LULCC) on carbon stocks, the relationship between land use structure/spatial form and carbon emissions, and the paths and schemes for low-carbon spatial planning. (3) Studies usually use upscale, homoscale, and downscale routes to correlate carbon emissions to land and then use comparative analysis, regression analysis, spatial analysis, and scenario simulation methods to conduct further analyses. (4) Studies have yielded some consensus: human land use can influence carbon emissions through LULCC, land use structure and spatial form, and spatial planning can reduce carbon emissions. In conclusion, this paper proposes that future research could be deepened in the following aspects: introducing land property rights and spatial planning management systems as research preconditions; exploring the sensitivity of carbon emissions from human activities to land space; strengthening research on low-carbon planning at medium- and long-term time scales and micro- and meso-spatial scales.

Suggested Citation

  • Yongmei Wang & Xiangmu Jin, 2025. "Land Use, Spatial Planning, and Their Influence on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 14(7), pages 1-20, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1406-:d:1694718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    2. Fabio Grazi & Jeroen C.J.M. van den Bergh & Jos N. van Ommeren, 2008. "An Empirical Analysis of Urban Form, Transport, and Global Warming," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-122.
    3. Cervero, Robert & Day, Jennifer, 2008. "Suburbanization and transit-oriented development in China," Transport Policy, Elsevier, vol. 15(5), pages 315-323, September.
    4. Lyndré Nel & Ana Flávia Boeni & Viola Judit Prohászka & Alfréd Szilágyi & Eszter Tormáné Kovács & László Pásztor & Csaba Centeri, 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    6. William W. Hood & Concepción S. Wilson, 2001. "The Literature of Bibliometrics, Scientometrics, and Informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(2), pages 291-314, October.
    7. Ligang Wang & Dan Liu & Xinyi Wu & Xiaopu Zhang & Qiaoyang Liu & Weijiang Kong & Pingping Luo & Shengfu Yang, 2025. "Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model," Land, MDPI, vol. 14(4), pages 1-26, April.
    8. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    9. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    10. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    11. Linfeng Xu & Xuan Liu & De Tong & Zhixin Liu & Lirong Yin & Wenfeng Zheng, 2022. "Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model," Land, MDPI, vol. 11(5), pages 1-16, April.
    12. Raupach, M.R. & Rayner, P.J. & Paget, M., 2010. "Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions," Energy Policy, Elsevier, vol. 38(9), pages 4756-4764, September.
    13. R. A. Houghton & Brett Byers & Alexander A. Nassikas, 2015. "A role for tropical forests in stabilizing atmospheric CO2," Nature Climate Change, Nature, vol. 5(12), pages 1022-1023, December.
    14. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    15. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    16. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    2. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    3. Yin, Yanhong & Aikawa, Kohei & Mizokami, Shoshi, 2016. "Effect of housing relocation subsidy policy on energy consumption: A simulation case study," Applied Energy, Elsevier, vol. 168(C), pages 291-302.
    4. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    6. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    7. Chong Liu & Guangzhou Chen & Haiyang Li & Jiaming Li & Gubu Muga, 2025. "Impact of Urban Morphology on Carbon Emission Differentiation at County Scale in China," Land, MDPI, vol. 14(6), pages 1-21, May.
    8. Zhao, Pengjun & Wan, Jie, 2021. "Land use and travel burden of residents in urban fringe and rural areas: An evaluation of urban-rural integration initiatives in Beijing," Land Use Policy, Elsevier, vol. 103(C).
    9. Yanming Sun & Baozhong Chen & Qingli Li, 2024. "Impact of Urban Form in the Yangtze River Delta of China on the Spatiotemporal Evolution of Carbon Emissions from Transportation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    10. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    11. Shuaijun Yue & Guangxing Ji & Weiqiang Chen & Junchang Huang & Yulong Guo & Mingyue Cheng, 2023. "Spatial and Temporal Variability Characteristics of Future Carbon Stocks in Anhui Province under Different SSP Scenarios Based on PLUS and InVEST Models," Land, MDPI, vol. 12(9), pages 1-17, August.
    12. Jiaji Zhu & Xijun Hu & Wenzhuo Xu & Jianyu Shi & Yihe Huang & Bingwen Yan, 2023. "Regional Carbon Stock Response to Land Use Structure Change and Multi-Scenario Prediction: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    13. Wu, Aohui & Wang, Zhitai, 2025. "Multi-scenario simulation and carbon storage assessment of land use in a multi-mountainous city," Land Use Policy, Elsevier, vol. 153(C).
    14. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    15. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    16. Paul Drummond, 2021. "Assessing City Governance for Low-Carbon Mobility in London," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    17. Sheng, Lu & Wu, Xiao & He, Yan, 2023. "Impact of residential relocation on activity-travel behaviors between household couples: A case study of Kunming, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    18. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    19. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    20. Guang Chen & Jian Gong, 2025. "Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution," Land, MDPI, vol. 14(3), pages 1-25, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1406-:d:1694718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.