IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1163-d1666636.html
   My bibliography  Save this article

Impact of Urban Morphology on Carbon Emission Differentiation at County Scale in China

Author

Listed:
  • Chong Liu

    (School of Public Policy & Management, Anhui Jianzhu University, Hefei 230022, China)

  • Guangzhou Chen

    (Cultivated Land Protection Innovation Demonstration Center of Anhui Province, Anhui Jianzhu University, Hefei 230601, China)

  • Haiyang Li

    (School of Public Policy and Management, Tsinghua University, Beijing 100084, China)

  • Jiaming Li

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Gubu Muga

    (College of Economics and Management, Mianyang Teachers’College, Mianyang 621000, China)

Abstract

Urban morphology’s effects on carbon dioxide reduction and sustainable development have drawn more attention. The county scale is crucial in influencing urban development and is the central element of China’s recent urbanization. To achieve scientific urban planning and fully explore its potential in carbon emission reduction, local governments need to investigate the impact of urban morphology on carbon emissions (CE). However, previous studies have predominantly focused on provincial capitals and urban clusters. To address this gap, this study quantified four aspects of urban form, combined energy consumption, and nighttime light data to estimate CE in Chinese counties from 2000 to 2020 and analyzed the effects of these factors on CE using multiscale geographically weighted Regression(MGWR) models and geographic detectors. The following are the main findings: (1) Total CE at the county scale in China has consistently increased from 2000 to 2020. (2) The largest patch index (LPI) is the most influential urban morphological factor on CE, while the impact of Class Area (CA) has been increasing. (3) Bi-factor enhancement and nonlinear enhancement are the two primary interaction types of urban morphological factors; the most important interaction is between LSI and CA. (4) The urban morphological factors exhibit varying degrees of spatial heterogeneity, with the influencing factors ranked as CA > LPI > path density (PD) > edge density (ED) > patch cohesion index (COHESION), where LPI and CA consistently show a positive effect on CE. This study’s findings establish a scientific foundation for land spatial planning and tailored emission reduction methods at the county scale in China.

Suggested Citation

  • Chong Liu & Guangzhou Chen & Haiyang Li & Jiaming Li & Gubu Muga, 2025. "Impact of Urban Morphology on Carbon Emission Differentiation at County Scale in China," Land, MDPI, vol. 14(6), pages 1-21, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1163-:d:1666636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangming Yang & Guofang Gong & Yao Luo & Yunrui Yang & Qingqing Gui, 2022. "Spatiotemporal Characteristics and Influencing Factors of Tourism–Urbanization–Technology–Ecological Environment on the Yunnan–Guizhou–Sichuan Region: An Uncoordinated Coupling Perspective," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    2. Dissanayake, Sumali & Mahadevan, Renuka & Asafu-Adjaye, John, 2020. "Evaluating the efficiency of carbon emissions policies in a large emitting developing country," Energy Policy, Elsevier, vol. 136(C).
    3. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    4. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    5. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    6. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    7. Lin, Jinyao & Lu, Siyan & He, Xiaoyu & Wang, Fang, 2021. "Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression," Energy, Elsevier, vol. 236(C).
    8. He, Sanwei & Yu, Shan & Li, Guangdong & Zhang, Junfeng, 2020. "Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities," Land Use Policy, Elsevier, vol. 95(C).
    9. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    10. Xiaolong Shi & Yu Cheng & Jianing Zhang & Yue Zhang & Lijie Wei & Yaping Wang, 2025. "Impacts of the Urban Form Structure on Carbon Emission Efficiency in China’s Three Major Urban Agglomerations: A Study from an Urban Economic Activities Perspective," Sustainability, MDPI, vol. 17(9), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    2. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    3. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    4. Yanming Sun & Baozhong Chen & Qingli Li, 2024. "Impact of Urban Form in the Yangtze River Delta of China on the Spatiotemporal Evolution of Carbon Emissions from Transportation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    5. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    6. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    7. Xiaoyue Zeng & Deliang Fan & Yunfei Zheng & Shijie Li, 2024. "Exploring the Differentiated Impact of Urban Spatial Form on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 13(6), pages 1-19, June.
    8. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    9. Chengye Jia & Shuang Feng & Hong Chu & Weige Huang, 2023. "The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China," Land, MDPI, vol. 12(5), pages 1-24, April.
    10. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    11. Ding, Dan & Liu, Xiaoping & Xu, Xiaocong, 2024. "Projecting the future fine-resolution carbon dioxide emissions under the shared socioeconomic pathways for carbon peak evaluation," Applied Energy, Elsevier, vol. 365(C).
    12. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    13. Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    14. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    15. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
    16. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    17. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    18. Shijie Li & Chunshan Zhou & Shaojian Wang & Shuang Gao & Zhitao Liu, 2019. "Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    19. Li, Zhihui & Deng, Xiangzheng & Peng, Lu, 2020. "Uncovering trajectories and impact factors of CO2 emissions: A sectoral and spatially disaggregated revisit in Beijing," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Rong Wu & Yongli Zhang & Meilin Dai & Qingyin Li & Changlong Sun, 2023. "The Heterogeneity of the Drivers of Urban Form in China: Perspectives from Regional Disparities and Development Stage Variations," Land, MDPI, vol. 12(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1163-:d:1666636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.