IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923017191.html
   My bibliography  Save this article

Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data

Author

Listed:
  • Lv, Zhuoran
  • Guo, Huadong
  • Zhang, Lu
  • Liang, Dong
  • Zhu, Qi
  • Liu, Xuting
  • Zhou, Heng
  • Liu, Yiming
  • Gou, Yiting
  • Dou, Xinyu
  • Chen, Guoqiang

Abstract

Urban lighting system is an important part of urban space service functions. With the continuous advancement of sustainable development goals, governments of various countries are gradually paying attention to the energy, social, economic and environmental benefits of urban lighting systems, and promote the use of LED lighting to replace HPS lamp lighting to save urban energy consumption. In this study, we used the glimmer imager data of SDGSAT-1 launched in 2021, combined with the streetlight dataset of the District of Columbia, to establish a classification model for distinguishing LED lights from HPS lamps, with an overall recognition accuracy of 80.3% and the kappa coefficient is 0.603. Based on this model, we identify light types in the central cities of China’s three urban agglomerations: Beijing, Shanghai, Guangzhou, and Shenzhen, and describe their lighting composition and spatial distribution patterns. Additionally, we make a preliminary estimate of the money and electricity consumption saved by lighting renovations, and analyzed the impact of urban lighting changes on public perception. This study combines SDGSAT-1 data to propose a training model in urban lighting classification and applies it to a wide range of urban, the results of which help to provide data to support the implementation of SDG7.

Suggested Citation

  • Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017191
    DOI: 10.1016/j.apenergy.2023.122355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    2. Brandon C. Welsh & David P. Farrington, 2008. "Effects of Improved Street Lighting on Crime," Campbell Systematic Reviews, John Wiley & Sons, vol. 4(1), pages 1-51.
    3. Zhong, Liang & Liu, Xiaosheng & Ao, Jianfeng, 2022. "Spatiotemporal dynamics evaluation of pixel-level gross domestic product, electric power consumption, and carbon emissions in countries along the belt and road," Energy, Elsevier, vol. 239(PA).
    4. Yang, Wangming & Luan, Yibo & Liu, Xiaolei & Yu, Xiaoyong & Miao, Lijuan & Cui, Xuefeng, 2017. "A new global anthropogenic heat estimation based on high-resolution nighttime light data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4, pages 1-11.
    5. Tilottama Ghosh & Sharolyn J. Anderson & Christopher D. Elvidge & Paul C. Sutton, 2013. "Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being," Sustainability, MDPI, vol. 5(12), pages 1-32, November.
    6. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    7. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    8. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    9. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    10. Shi, Kaifang & Yang, Qingyuan & Fang, Guangliang & Yu, Bailang & Chen, Zuoqi & Yang, Chengshu & Wu, Jianping, 2019. "Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China," Energy, Elsevier, vol. 167(C), pages 641-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    2. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    3. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    4. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    5. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    6. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    7. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    8. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    9. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    10. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    11. Shengnan Jiang & Guoen Wei & Zhenke Zhang & Yue Wang & Minghui Xu & Qing Wang & Priyanko Das & Binglin Liu, 2020. "Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data," Land, MDPI, vol. 10(1), pages 1-19, December.
    12. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    13. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
    14. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    15. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    16. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    17. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    18. Yanjun Wang & Fei Teng & Mengjie Wang & Shaochun Li & Yunhao Lin & Hengfan Cai, 2022. "Monitoring Spatiotemporal Distribution of the GDP of Major Cities in China during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(13), pages 1-29, June.
    19. Shijie Li & Chunshan Zhou & Shaojian Wang & Shuang Gao & Zhitao Liu, 2019. "Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    20. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.