IDEAS home Printed from https://ideas.repec.org/a/lrk/eeaart/29_2_6.html
   My bibliography  Save this article

Factores determinantes de la demanda eléctrica de los hogares en España: una aproximación mediante regresión cuantílica/Determinants of Household Electricity Demand in Spain: An Approach through Quantile Regression

Author

Listed:
  • MEDINA, EVA

    () (Departamento de Economía Aplicada, UNIVERSIDAD AUTÓNOMA DE MADRID, ESPAÑA.)

  • VICÉNS, JOSÉ

    () (Departamento de Economía Aplicada, UNIVERSIDAD AUTÓNOMA DE MADRID, ESPAÑA.)

Abstract

El objetivo de este estudio es identificar los factores determinantes del consumo eléctrico de los hogares, que deberán tenerse en cuenta en la definición de políticas de ahorro energético. Para ello, y a partir de los datos de la Encuesta de Presupuestos Familiares, se estima un modelo econométrico de demanda eléctrica utilizando la metodología de la regresión cuantílica, que se presenta como una herramienta más potente en la estimación de relaciones causales cuando se trabaja con datos procedentes de encuestas con tamaños muestrales elevados y ante la presencia de heterocedasticidad y/o datos atípicos. Los resultados permiten definir a la electricidad como un bien de primera necesidad, con una elasticidad renta próxima a cero, y donde cualquier política de ahorro energético que implique variación en la renta disponible tendrá un impacto muy limitado en los hábitos de consumo eléctrico. The aim of this study is to identify the determinants of household electricity consumption, to be taken into account in the definition of energy saving policies. Using microdata from Household Budget Survey in Spain, an econometric model of electricity demand is estimated using the methodology of quantile regression, which is a more powerful tool in the estimation of causal relationships when working with data from surveys with sample sizes higher and presence of heteroscedasticity and/or outliers. The results allow us to define the electricity consumption as a necessary good, with an income elasticity close to zero, and where any energy-saving policy that involves change in income will have a limited impact on electricity consumption habits.

Suggested Citation

  • Medina, Eva & Vicéns, José, 2011. "Factores determinantes de la demanda eléctrica de los hogares en España: una aproximación mediante regresión cuantílica/Determinants of Household Electricity Demand in Spain: An Approach through Quant," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 29, pages 515-538, Agosto.
  • Handle: RePEc:lrk:eeaart:29_2_6
    as

    Download full text from publisher

    File URL: http://www.revista-eea.net
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maddock, Rodney & Castano, Elkin & Vella, Frank, 1992. "Estimating Electricity Demand: The Cost of Linearising the Budget Constraint," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 350-354, May.
    2. Herriges, Joseph A & King, Kathleen Kuester, 1994. "Residential Demand for Electricity under Inverted Block Rates: Evidence from a Controlled Experiment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 419-430, October.
    3. Bushnell, James & Mansur, Erin T., 2005. "Consumption Under Noisy Price Signals: A Study of Electricity Retail Rate Deregulation in San Diego," Staff General Research Papers Archive 13142, Iowa State University, Department of Economics.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    5. James B. Bushnell & Erin T. Mansur, 2005. "CONSUMPTION UNDER NOISY PRICE SIGNALS: A STUDY OF ELECTRICITY RETAIL RATE DEREGULATION IN SAN DIEGO -super-," Journal of Industrial Economics, Wiley Blackwell, vol. 53(4), pages 493-513, December.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(01), April.
    8. Soren Leth-Petersen, 2002. "Micro Econometric Modelling of Household Energy Use: Testing for Dependence between Demand for Electricity and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 57-84.
    9. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    10. Halvorsen, Bente & Larsen, Bodil M., 2001. "The flexibility of household electricity demand over time," Resource and Energy Economics, Elsevier, vol. 23(1), pages 1-18, January.
    11. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
    12. E. Raphael Branch, 1993. "Short Run Income Elasticity of Demand for Residential Electricity Using Consumer Expenditure Survey Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 111-122.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Consumo eléctrico sector residencial; regresión cuantílica; elasticidad renta ; Residential Sector Electricity Consumption; Quantile Regression; Income Elasticity..;

    JEL classification:

    • D14 - Microeconomics - - Household Behavior - - - Household Saving; Personal Finance
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrk:eeaart:29_2_6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beatriz Rodríguez Prado). General contact details of provider: http://edirc.repec.org/data/fcvldes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.