IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v164y2022ics0301421522001033.html
   My bibliography  Save this article

Dynamic pricing of electricity: Enabling demand response in domestic households

Author

Listed:
  • Blaschke, Maximilian J.

Abstract

Fluctuations in retail energy prices may incentivize domestic households to adapt their load pattern in order to minimize the cost of electricity. This paper determines the price volatility necessary for automatic load shifting to cover the cost of the associated smart metering within a household. This study shows that current price volatility does not allow sufficient savings to compensate for additional metering costs. However, results indicate that a change towards an ‘ad-valorem’ electricity taxation dependent on exchange prices could make residential demand-side management profitable. At the same time, the potential price risk for consumers that do not react to pricing signals because of a lack of smart devices, is almost negligible. As consumption patterns suggest, these households consume in times of both high and low prices, thereby almost canceling out higher payments at peak times even without any load shifts. With these results, policymakers can anticipate the effects of dynamic retail prices on electricity and derive the implications of different taxation settings.

Suggested Citation

  • Blaschke, Maximilian J., 2022. "Dynamic pricing of electricity: Enabling demand response in domestic households," Energy Policy, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522001033
    DOI: 10.1016/j.enpol.2022.112878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522001033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    2. Jonas Katz & Lena Kitzing & Sascha T. Schröder & Frits Møller Andersen & Poul Erik Morthorst & Morten Stryg, 2018. "Household electricity consumers’ incentive to choose dynamic pricing under different taxation schemes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    3. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    4. Finn, P. & Fitzpatrick, C. & Connolly, D. & Leahy, M. & Relihan, L., 2011. "Facilitation of renewable electricity using price based appliance control in Ireland’s electricity market," Energy, Elsevier, vol. 36(5), pages 2952-2960.
    5. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    6. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    7. Hunt Allcott & Todd Rogers, 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," American Economic Review, American Economic Association, vol. 104(10), pages 3003-3037, October.
    8. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    9. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    10. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    11. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    12. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yin, 2023. "The influencing factors of carrying capacity of urban electricity infrastructure: Case study of six Chinese mega-cities," Energy, Elsevier, vol. 282(C).
    2. Ben Arab, Marwa & Rekik, Mouna & Krichen, Lotfi, 2023. "A priority-based seven-layer strategy for energy management cooperation in a smart city integrated green technology," Applied Energy, Elsevier, vol. 335(C).
    3. Evgenia Kapassa & Marinos Themistocleous, 2022. "Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review," Future Internet, MDPI, vol. 14(5), pages 1-19, April.
    4. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    5. Shi, Renwei & Jiao, Zaibin, 2023. "Individual household demand response potential evaluation and identification based on machine learning algorithms," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    2. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    3. El-Baz, Wessam & Tzscheutschler, Peter, 2015. "Short-term smart learning electrical load prediction algorithm for home energy management systems," Applied Energy, Elsevier, vol. 147(C), pages 10-19.
    4. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    5. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    6. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
    7. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    8. Whittle, Colin & Jones, Christopher R. & While, Aidan, 2020. "Empowering householders: Identifying predictors of intentions to use a home energy management system in the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    9. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    10. Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
    11. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    12. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    13. Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
    14. Mauser, Ingo & Müller, Jan & Allerding, Florian & Schmeck, Hartmut, 2016. "Adaptive building energy management with multiple commodities and flexible evolutionary optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 911-921.
    15. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    16. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    17. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522001033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.