IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i5p136-d805978.html
   My bibliography  Save this article

Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review

Author

Listed:
  • Evgenia Kapassa

    (Institute for the Future, Department of Digital Innovation, University of Nicosia, Nicosia 2414, Cyprus)

  • Marinos Themistocleous

    (Institute for the Future, Department of Digital Innovation, University of Nicosia, Nicosia 2414, Cyprus)

Abstract

Energy management in the Internet of Vehicles (IoV) is becoming more prevalent as the usage of distributed Electric Vehicles (EV) grows. As a result, Demand Response (DR) management has been introduced to achieve efficient energy management in IoV. Through DR management, EV drivers are allowed to adjust their energy consumption and generation based on a variety of parameters, such as cost, driving patterns and driving routes. Nonetheless, research in IoV DR management is still in its early stages, and the implementation of DR schemes faces a number of significant hurdles. Blockchain is used to solve some of them (e.g., incentivization, privacy and security issues, lack of interoperability and high mobility). For instance, blockchain enables the introduction of safe, reliable and decentralized Peer-to-Peer (P2P) energy trading. The combination of blockchain and IoV is a new promising approach to further improve/overcome the aforementioned limitations. However, there is limited literature in Demand Response Management (DRM) schemes designed for IoV. Therefore, there is a need for a systematic literature review (SLR) to collect and critically analyze the existing relevant literature, in an attempt to highlight open issues. Thus, in this article, we conduct a SLR, investigating how blockchain technology assists the area of DRM in IoV. We contribute to the body of knowledge by offering a set of observations and research challenges on blockchain-based DRM in IoV. In doing so, we allow other researchers to focus their work on them, and further contribute to this area.

Suggested Citation

  • Evgenia Kapassa & Marinos Themistocleous, 2022. "Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review," Future Internet, MDPI, vol. 14(5), pages 1-19, April.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:5:p:136-:d:805978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/5/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/5/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    2. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    3. Daniel Ramos & Mahsa Khorram & Pedro Faria & Zita Vale, 2021. "Load Forecasting in an Office Building with Different Data Structure and Learning Parameters," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    4. Evgenia Kapassa & Marinos Themistocleous & Klitos Christodoulou & Elias Iosif, 2021. "Blockchain Application in Internet of Vehicles: Challenges, Contributions and Current Limitations," Future Internet, MDPI, vol. 13(12), pages 1-32, December.
    5. Blaschke, Maximilian J., 2022. "Dynamic pricing of electricity: Enabling demand response in domestic households," Energy Policy, Elsevier, vol. 164(C).
    6. Zishan Guo & Zhenya Ji & Qi Wang, 2020. "Blockchain-Enabled Demand Response Scheme with Individualized Incentive Pricing Mode," Energies, MDPI, vol. 13(19), pages 1-17, October.
    7. repec:eco:journ2:2017-04-07 is not listed on IDEAS
    8. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    9. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    10. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    11. Carlos Cruz & Esther Palomar & Ignacio Bravo & Alfredo Gardel, 2020. "Cooperative Demand Response Framework for a Smart Community Targeting Renewables: Testbed Implementation and Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    12. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.
    13. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    14. Jaclason M. Veras & Igor Rafael S. Silva & Plácido R. Pinheiro & Ricardo A. L. Rabêlo, 2018. "Towards the Handling Demand Response Optimization Model for Home Appliances," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbing Zhao & Quan Qi & Jiong Zhou & Xiong Luo, 2023. "Blockchain-Based Applications for Smart Grids: An Umbrella Review," Energies, MDPI, vol. 16(17), pages 1-35, August.
    2. Ahad ZareRavasan & Taha Mansouri & Michal Krčál & Saeed Rouhani, 2022. "Editorial for the Special Issue on Blockchain: Applications, Challenges, and Solutions," Future Internet, MDPI, vol. 14(5), pages 1-2, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    2. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    3. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    4. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    5. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    6. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    7. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    9. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    10. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    11. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    13. Ge, Shaoyun & Li, Jifeng & He, Xingtang & Liu, Hong, 2021. "Joint energy market design for local integrated energy system service procurement considering demand flexibility," Applied Energy, Elsevier, vol. 297(C).
    14. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    15. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    16. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    17. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    18. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    19. Kuruseelan S & Vaithilingam C, 2019. "Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid," Energies, MDPI, vol. 12(19), pages 1-15, September.
    20. Yang, Jiawei & Paudel, Amrit & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2021. "A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:5:p:136-:d:805978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.