IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v50y2015icp63-69.html
   My bibliography  Save this article

Relationship between ethanol and gasoline: AIDS approach

Author

Listed:
  • Tenkorang, Frank
  • Dority, Bree L.
  • Bridges, Deborah
  • Lam, Eddery

Abstract

Ethanol production in the United States has increased significantly due to government support, which has begun to dwindle. Ethanol now seems to compete with gasoline for vehicle fuel but because ethanol is mostly sold as a blend, gasoline and ethanol could be complementary fuel sources. The study investigates the true relationship between these fuels since it has policy implications. Results of LA/AIDS estimation show the two fuels were substitutes before the rapid expansion of ethanol production but have become complements overtime due to increasing share of ethanol in fuel consumption.

Suggested Citation

  • Tenkorang, Frank & Dority, Bree L. & Bridges, Deborah & Lam, Eddery, 2015. "Relationship between ethanol and gasoline: AIDS approach," Energy Economics, Elsevier, vol. 50(C), pages 63-69.
  • Handle: RePEc:eee:eneeco:v:50:y:2015:i:c:p:63-69
    DOI: 10.1016/j.eneco.2015.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315001425
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael K. Berkowitz & Nancy Gallini & Eric Miller & Rob Wolfe, 1990. "Disaggregate Analysis of the Demand for Gasoline," Canadian Journal of Economics, Canadian Economics Association, vol. 23(2), pages 253-275, May.
    2. Eales, James S. & Unnevehr, Laurian J., 1994. "The inverse almost ideal demand system," European Economic Review, Elsevier, vol. 38(1), pages 101-115, January.
    3. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    4. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    5. Alston, Julian M & Foster, Kenneth A & Green, Richard D, 1994. "Estimating Elasticities with the Linear Approximate Almost Ideal Demand System: Some Monte Carlo Results," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 351-356, May.
    6. Edgerton, David L., 1993. "On The Estimation Of Separable Demand Models," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(02), December.
    7. James S. Eales & Laurian J. Unnevehr, 1988. "Demand for Beef and Chicken Products: Separability and Structural Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(3), pages 521-532.
    8. Taljaard, Pieter R. & Alemu, Zerihun Gudeta & van Schalkwyk, Herman D., 2004. "The demand for meat in South Africa: An almost ideal estimation," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 43(4), December.
    9. Arie Beresteanu & Shanjun Li, 2011. "Gasoline Prices, Government Support, And The Demand For Hybrid Vehicles In The United States," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 161-182, February.
    10. Chalfant, James A, 1987. "A Globally Flexible, Almost Ideal Demand System," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 233-242, April.
    11. Adolf Buse, 1994. "Evaluating the Linearized Almost Ideal Demand System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 781-793.
    12. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    13. Rask, Kevin N., 1998. "Clean air and renewable fuels: the market for fuel ethanol in the US from 1984 to 1993," Energy Economics, Elsevier, vol. 20(3), pages 325-345, June.
    14. Kevin McNew & Duane Griffith, 2005. "Measuring the Impact of Ethanol Plants on Local Grain Prices," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(2), pages 164-180.
    15. Luchansky, Matthew S. & Monks, James, 2009. "Supply and demand elasticities in the U.S. ethanol fuel market," Energy Economics, Elsevier, vol. 31(3), pages 403-410, May.
    16. Shanjun Li & Christopher Timmins & Roger H. von Haefen, 2009. "How Do Gasoline Prices Affect Fleet Fuel Economy?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(2), pages 113-137, August.
    17. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    18. Hansen, Bruce E, 2002. "Tests for Parameter Instability in Regressions with I(1) Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 45-59, January.
    19. Anderson, Soren T. & Elzinga, Andrew, 2014. "A ban on one is a boon for the other: Strict gasoline content rules and implicit ethanol blending mandates," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 258-273.
    20. Carol A. Dahl, 1982. "Do Gasoline Demand Elasticities Vary?," Land Economics, University of Wisconsin Press, vol. 58(3), pages 373-382.
    21. Zhang, Zibin & Qiu, Cheng & Wetzstein, Michael, 2010. "Blend-wall economics: Relaxing US ethanol regulations can lead to increased use of fossil fuels," Energy Policy, Elsevier, vol. 38(7), pages 3426-3430, July.
    22. Wallace E. Tyner & Farzad Taheripour, 2007. "Renewable Energy Policy Alternatives for the Future," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1303-1310.
    23. Carlos Bastian-Pinto & Luiz Brandão & Mariana Lemos Alves, 2010. "Valuing the switching flexibility of the ethanol-gas flex fuel car," Annals of Operations Research, Springer, vol. 176(1), pages 333-348, April.
    24. Wyatt Thompson, 2004. "Using Elasticities from an Almost Ideal Demand System? Watch Out for Group Expenditure!," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1108-1116.
    25. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    2. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, Open Access Journal, vol. 9(6), pages 1-16, June.
    3. Ghoddusi, Hamed, 2017. "Blending under uncertainty: Real options analysis of ethanol plants and biofuels mandates," Energy Economics, Elsevier, vol. 61(C), pages 110-120.

    More about this item

    Keywords

    Ethanol; LA/AIDS; Gasoline; Price elasticity; Complements; Substitutes;

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:50:y:2015:i:c:p:63-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.