IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i2p611-624.html
   My bibliography  Save this article

Optimal trading with regime switching: Numerical and analytic techniques applied to valuing storage in an electricity balancing market

Author

Listed:
  • Johnson, Paul
  • Szabó, Dávid Zoltán
  • Duck, Peter

Abstract

Accurately valuing storage in the electricity market recognizes its role in enhancing grid flexibility, integrating renewable energy, managing peak loads, providing ancillary services and improving market efficiency. In this paper we outline an optimal trading problem for an Energy Storage Device trading on the electricity balancing (or regulating) market. To capture the features of the balancing (or regulating) market price we combine stochastic differential equations with Markov regime switching to create a novel model, and outline how this can be calibrated to real market data available from NordPool. By modelling a battery that can be filled or emptied instantaneously, this simplifying assumption allows us to generate numerical and quasi analytic solutions.

Suggested Citation

  • Johnson, Paul & Szabó, Dávid Zoltán & Duck, Peter, 2024. "Optimal trading with regime switching: Numerical and analytic techniques applied to valuing storage in an electricity balancing market," European Journal of Operational Research, Elsevier, vol. 319(2), pages 611-624.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:611-624
    DOI: 10.1016/j.ejor.2024.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korn, Ralf & Melnyk, Yaroslav & Seifried, Frank Thomas, 2017. "Stochastic impulse control with regime-switching dynamics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1024-1042.
    2. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
    3. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    4. Chattopadhyay, Deb, 2014. "Modelling renewable energy impact on the electricity market in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 9-22.
    5. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    6. Huntley Schaller & Simon Van Norden, 1997. "Regime switching in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(2), pages 177-191.
    7. Kristiansen, Tarjei, 2012. "Forecasting Nord Pool day-ahead prices with an autoregressive model," Energy Policy, Elsevier, vol. 49(C), pages 328-332.
    8. Moriarty, John & Palczewski, Jan, 2017. "Real option valuation for reserve capacity," European Journal of Operational Research, Elsevier, vol. 257(1), pages 251-260.
    9. Szabó, Dávid Zoltán & Duck, Peter & Johnson, Paul, 2020. "Optimal trading of imbalance options for power systems using an energy storage device," European Journal of Operational Research, Elsevier, vol. 285(1), pages 3-22.
    10. Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.
    11. Paul De Grauwe & Isabel Vansteenkiste, 2014. "Exchange Rates and Fundamentals: A Non-Linear Relationship?," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 5, pages 159-187, World Scientific Publishing Co. Pte. Ltd..
    12. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    13. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    14. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    15. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    16. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    17. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    18. Frommel, Michael & MacDonald, Ronald & Menkhoff, Lukas, 2005. "Markov switching regimes in a monetary exchange rate model," Economic Modelling, Elsevier, vol. 22(3), pages 485-502, May.
    19. M. Wahab & Chi-Guhn Lee, 2011. "Pricing swing options with regime switching," Annals of Operations Research, Springer, vol. 185(1), pages 139-160, May.
    20. Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
    21. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    22. Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
    23. Shah, Muhammad Ibrahim & Kirikkaleli, Dervis & Adedoyin, Festus Fatai, 2021. "Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark," Renewable Energy, Elsevier, vol. 175(C), pages 797-806.
    24. Ye, Wuyi & Liu, Xiaoquan & Miao, Baiqi, 2012. "Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions," European Journal of Operational Research, Elsevier, vol. 222(1), pages 96-103.
    25. Tiwari, Aviral Kumar & Menegaki, Angeliki N., 2019. "A time varying approach on the price elasticity of electricity in India during 1975–2013," Energy, Elsevier, vol. 183(C), pages 385-397.
    26. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    3. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    5. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    6. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    7. Lindström, Erik & Norén, Vicke & Madsen, Henrik, 2015. "Consumption management in the Nord Pool region: A stability analysis," Applied Energy, Elsevier, vol. 146(C), pages 239-246.
    8. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    9. Lindström, Erik & Regland, Fredrik, 2012. "Modeling extreme dependence between European electricity markets," Energy Economics, Elsevier, vol. 34(4), pages 899-904.
    10. Eichler, M. & Türk, D., 2013. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Energy Economics, Elsevier, vol. 36(C), pages 614-624.
    11. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    12. Joanna Janczura, 2012. "Pricing electricity derivatives within a Markov regime-switching model," Papers 1203.5442, arXiv.org.
    13. Spodniak, Petr & Bertsch, Valentin, 2017. "Determinants of power spreads in electricity futures markets: A multinational analysis," Papers WP580, Economic and Social Research Institute (ESRI).
    14. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
    15. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    16. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    17. Stephen Machin & Olivier Marie & Sunčica Vujić, 2012. "Youth Crime and Education Expansion," German Economic Review, Verein für Socialpolitik, vol. 13(4), pages 366-384, November.
    18. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    19. Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
    20. Eichler, M. & Türk, D.D.T., 2012. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:611-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.