IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v56y2009i3p226-238.html
   My bibliography  Save this article

Natural gas storage valuation and optimization: A real options application

Author

Listed:
  • Matt Thompson
  • Matt Davison
  • Henning Rasmussen

Abstract

In this article, we present an algorithm for the valuation and optimal operation of natural gas storage facilities. Real options theory is used to derive nonlinear partial‐integro‐differential equations (PIDEs), the solution of which give both valuation and optimal operating strategies for these facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time‐dependent, mean‐reverting dynamics, and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real storage units. These characteristics include working gas capacities, variable deliverability and injection rates, and cycling limitations. We illustrate the model with a numerical example of a salt cavern storage facility that clearly shows how a gas storage facility is like a financial straddle with both put and call properties. Depending on the amount of gas in storage the relative influence of the put and call components vary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009

Suggested Citation

  • Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
  • Handle: RePEc:wly:navres:v:56:y:2009:i:3:p:226-238
    DOI: 10.1002/nav.20327
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20327
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    3. Mihaela Manoliu, 2004. "Storage Options Valuation Using Multilevel Trees And Calendar Spreads," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 425-464.
    4. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    5. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    6. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    7. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    10. Les Clewlow & Chris Strickland, 1999. "A Multi-Factor Model for Energy Derivatives," Research Paper Series 28, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    2. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    3. Ren, Xiaohang & Lu, Zudi & Cheng, Cheng & Shi, Yukun & Shen, Jian, 2019. "On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis," Energy Economics, Elsevier, vol. 80(C), pages 234-252.
    4. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    5. Johnson, Paul & Szabó, Dávid Zoltán & Duck, Peter, 2024. "Optimal trading with regime switching: Numerical and analytic techniques applied to valuing storage in an electricity balancing market," European Journal of Operational Research, Elsevier, vol. 319(2), pages 611-624.
    6. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    7. Yangfang (Helen) Zhou & Alan Scheller‐Wolf & Nicola Secomandi & Stephen Smith, 2019. "Managing Wind‐Based Electricity Generation in the Presence of Storage and Transmission Capacity," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 970-989, April.
    8. Lin Zhao & Sweder van Wijnbergen, 2015. "Asset Pricing in Incomplete Markets: Valuing Gas Storage Capacity," Tinbergen Institute Discussion Papers 15-104/VI/DSF95, Tinbergen Institute.
    9. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    10. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    11. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    12. Xiao, Ludi & Zhou, Peng & Bai, Yang & Zhang, Kai, 2024. "Modeling the dynamic allocation problem of multi-service storage system with strategy learning," Energy, Elsevier, vol. 302(C).
    13. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    14. Nicola Secomandi, 2015. "Merchant Commodity Storage Practice Revisited," Operations Research, INFORMS, vol. 63(5), pages 1131-1143, October.
    15. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Papers 2102.01980, arXiv.org, revised Mar 2021.
    16. Nicola Secomandi & Guoming Lai & François Margot & Alan Scheller-Wolf & Duane J. Seppi, 2015. "Merchant Commodity Storage and Term-Structure Model Error," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 302-320, July.
    17. Mason, Charles F. & Wilmot, Neil A., 2020. "Jumps in the convenience yield of crude oil," Resource and Energy Economics, Elsevier, vol. 60(C).
    18. Jinniao Qiu & Antony Ware & Yang Yang, 2024. "Stochastic Path-Dependent Volatility Models for Price-Storage Dynamics in Natural Gas Markets and Discrete-Time Swing Option Pricing," Papers 2406.16400, arXiv.org.
    19. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    20. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1021-1037, December.
    21. Ikonnikova, Svetlana A. & del Carpio Neyra, Victor & Berdysheva, Sofia, 2022. "Investment choices and production dynamics: The role of price expectations, financial deficit, and production constraints," Journal of Economics and Business, Elsevier, vol. 120(C).
    22. A. Lust & K.-H. Waldmann, 2019. "A general storage model with applications to energy systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 71-97, March.
    23. Szabó, Dávid Zoltán & Duck, Peter & Johnson, Paul, 2020. "Optimal trading of imbalance options for power systems using an energy storage device," European Journal of Operational Research, Elsevier, vol. 285(1), pages 3-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xisheng & Xie, Xiaoke, 2015. "Pricing American options: RNMs-constrained entropic least-squares approach," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 155-173.
    2. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    7. Shane Barratt & Jonathan Tuck & Stephen Boyd, 2020. "Convex Optimization Over Risk-Neutral Probabilities," Papers 2003.02878, arXiv.org.
    8. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    9. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    10. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    11. Inthavongsa, Inthanongsone & Drebenstedt, Carsten & Bongaerts, Jan & Sontamino, Phongpat, 2016. "Real options decision framework: Strategic operating policies for open pit mine planning," Resources Policy, Elsevier, vol. 47(C), pages 142-153.
    12. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Hoe, SingRu & David Diltz, J., 2012. "A real options approach to valuing and negotiating licensing agreements," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 322-332.
    15. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    16. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    17. J. C. Arismendi & Marcel Prokopczuk, 2016. "A moment-based analytic approximation of the risk-neutral density of American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 409-444, November.
    18. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    19. Kourouvakalis, Stylianos, 2008. "Méthodes numériques pour la valorisation d'options swings et autres problèmes sur les matières premières," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/116 edited by Geman, Hélyette.
    20. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:56:y:2009:i:3:p:226-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.