IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwp/0312.html
   My bibliography  Save this paper

The forecasting performance of German stock option densities

Author

Listed:
  • Ben R. Craig
  • Ernst Glatzer
  • Joachim G. Keller
  • Martin Scheicher

Abstract

In this paper the authors estimate risk-neutral densities (RND) for the largest euro-area stock market (the index of which is the German DAX), reporting their statistical properties, and evaluating their forecasting performance. The authors have applied an innovative test procedure to a new, rich, and accurate data set. They have two main results. First, They have recorded strong negative skewness in the densities. Second, they find evidence for a significant difference between the actual density and the risk-neutral density, leading to the conclusion that market participants were surprised by the extent of both the rise and the fall of the DAX.

Suggested Citation

  • Ben R. Craig & Ernst Glatzer & Joachim G. Keller & Martin Scheicher, 2003. "The forecasting performance of German stock option densities," Working Papers (Old Series) 0312, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwp:0312
    as

    Download full text from publisher

    File URL: https://www.clevelandfed.org/~/media/content/newsroom%20and%20events/publications/working%20papers/2003/wp%200312%20the%20forecasting%20performance%20pdf.pdf?la=en
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    2. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    3. Ben R. Craig & Joachim G. Keller, 2002. "The Empirical Performance of Option Based Densities of Foreign Exchange," Working Papers 60, Oesterreichische Nationalbank (Austrian Central Bank).
    4. Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
    5. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    6. Keller, Joachim G. & Craig, Ben R., 2002. "The Empirical Performance of Option Based Densities of Foreign Exchange," Discussion Paper Series 1: Economic Studies 2002,07, Deutsche Bundesbank.
    7. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    8. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
    11. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    12. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    13. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    14. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Didier Sornette & Peter Cauwels & Georgi Smilyanov, 2017. "Can We Use Volatility to Diagnose Financial Bubbles? Lessons from 40 Historical Bubbles," Swiss Finance Institute Research Paper Series 17-27, Swiss Finance Institute.
    2. Scharnagl, Michael & Stapf, Jelena, 2015. "Inflation, deflation, and uncertainty: What drives euro-area option-implied inflation expectations, and are they still anchored in the sovereign debt crisis?," Economic Modelling, Elsevier, vol. 48(C), pages 248-269.
    3. Belén Nieto & Gonzalo Rubio, 2007. "Measuring time-varying economic fears with consumption-based stochastic discount factors," Economics Working Papers 1029, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2007.
    4. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 2005-09, University of the Basque Country - Department of Foundations of Economic Analysis II.
    5. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glatzer, Ernst & Scheicher, Martin, 2003. "Modelling the implied probability of stock market movements," Working Paper Series 212, European Central Bank.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    4. Thomas Busch, 2008. "Testing the martingale restriction for option implied densities," Review of Derivatives Research, Springer, vol. 11(1), pages 61-81, March.
    5. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    6. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    7. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    8. Marcello Pericoli, 2005. "Can option smiles forecast changes in interest rates? An application to the US, the UK and the euro area," Temi di discussione (Economic working papers) 545, Bank of Italy, Economic Research and International Relations Area.
    9. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    10. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    11. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    14. Shane Barratt & Jonathan Tuck & Stephen Boyd, 2020. "Convex Optimization Over Risk-Neutral Probabilities," Papers 2003.02878, arXiv.org.
    15. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    16. Xiaoquan Liu, 2007. "Bid-ask spread, strike prices and risk-neutral densities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(11), pages 887-900.
    17. Halil Ibrahim Aydin & Ahmet Degerli & Pinar Ozlu, 2010. "Recovering Risk-Neutral Densities from Exchange Rate Options: Evidence in Turkey (Kur Opsiyonlarindan Riske Duyarsiz Yogunluk Fonksiyonu Cikarimi: Turkiye Ornegi)," Working Papers 1003, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    18. Manuel Ammann & Alexander Feser, 2019. "Robust Estimation of Risk-Neutral Moments," Working Papers on Finance 1902, University of St. Gallen, School of Finance.
    19. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    20. Daniel Giamouridis, 2005. "Inferring option-implied investors' risk preferences," Applied Financial Economics, Taylor & Francis Journals, vol. 15(7), pages 479-488.

    More about this item

    Keywords

    Stock market - Germany; Stock options;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwp:0312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.