IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwp/0313.html
   My bibliography  Save this paper

The empirical performance of option-based densities of foreign exchange

Author

Listed:
  • Ben R. Craig
  • Joachim G. Keller

Abstract

In this paper, the authors calculate risk-neutral densities (RND) by estimating the daily diffusion process of the underlying futures contract for foreign exchange, based on the price of the American puts and calls reported on the Chicago Mercantile Exchange for the end of the day. Their quick and accurate method of calculating the prices of the American options uses higher-order lattices and smoothing of the option's value function at the boundaries to mitigate the nondifferentiability of the payoff boundary at expiration and the early exercise boundary. The authors estimate the diffusion process by minimizing the squared distance between the calculated prices and the observed prices in the data.

Suggested Citation

  • Ben R. Craig & Joachim G. Keller, 2003. "The empirical performance of option-based densities of foreign exchange," Working Papers (Old Series) 0313, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwp:0313
    as

    Download full text from publisher

    File URL: https://www.clevelandfed.org/~/media/content/newsroom%20and%20events/publications/working%20papers/2003/wp%200313%20the%20empirical%20performance%20pdf.pdf?la=en
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    2. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    3. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
    4. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    5. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela De Raaij & Burkhard Raunig, 2005. "Evaluating density forecasts from models of stock market returns," The European Journal of Finance, Taylor & Francis Journals, vol. 11(2), pages 151-166.
    2. Ben R. Craig & Ernst Glatzer & Joachim G. Keller & Martin Scheicher, 2003. "The forecasting performance of German stock option densities," Working Papers (Old Series) 0312, Federal Reserve Bank of Cleveland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    2. Ben R. Craig & Joachim G. Keller, 2004. "The forecast ability of risk-neutral densities of foreign exchange," Working Papers (Old Series) 0409, Federal Reserve Bank of Cleveland.
    3. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    4. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    5. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(1), pages 3-46.
    6. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.
    9. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    10. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    11. Refet Gürkaynak & Justin Wolfers, 2005. "Macroeconomic Derivatives: An Initial Analysis of Market-Based Macro Forecasts, Uncertainty, and Risk," NBER Chapters, in: NBER International Seminar on Macroeconomics 2005, pages 11-50, National Bureau of Economic Research, Inc.
    12. Kliger, Doron & Levy, Ori, 2008. "Mood impacts on probability weighting functions: "Large-gamble" evidence," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 37(4), pages 1397-1411, August.
    13. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    14. Robert R Bliss & Nikolaos Panigirtzoglou, 2000. "Testing the stability of implied probability density functions," Bank of England working papers 114, Bank of England.
    15. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    16. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    17. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-17, June.
    18. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    19. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.
    20. Giacomini, Raffaella & Gottschling, Andreas & Haefke, Christian & White, Halbert, 2008. "Mixtures of t-distributions for finance and forecasting," Journal of Econometrics, Elsevier, vol. 144(1), pages 175-192, May.

    More about this item

    Keywords

    Options (Finance);

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwp:0313. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/frbclus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.