IDEAS home Printed from https://ideas.repec.org/p/fth/nystfi/98-032.html
   My bibliography  Save this paper

The Adaptive Mesh Model: A New Approach to Efficient Option Pricing

Author

Listed:
  • Stephen Figlewski
  • Bin Gao

Abstract

Exact closed-form valuation equations for traded derivative securities are rare. Numerical approximation, most commonly with Binomial and Trinomial lattice models, gives exact valuation in the limit, but convergence is non-monotonic and often slow, due to 'distribution error' and 'truncation error.' This paper explains how truncation error arises and describes the Adaptive Mesh Model (AMM), a new approach that sharply reduces it by grafting one or more small sections of fine high-resolution lattice onto a tree with coarser time and price steps. Three different AMM structures are presented, one for pricing ordinary options, one for barrier options, and one for computing delta and gamma efficiently. The AMM approach can be adapted to a wide variety of contingent claims, yielding significant improvement in efficiency with very little increase in computational effort. For some common problems, including calculating delta, accuracy increases by several orders of magnitude relative to the standard models with no measurable increase in execution time at all.

Suggested Citation

  • Stephen Figlewski & Bin Gao, 1998. "The Adaptive Mesh Model: A New Approach to Efficient Option Pricing," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-032, New York University, Leonard N. Stern School of Business-.
  • Handle: RePEc:fth:nystfi:98-032
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Rubinstein., 1991. "Exotic Options," Research Program in Finance Working Papers RPF-220, University of California at Berkeley.
    2. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    3. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(01), pages 87-100, March.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    5. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    8. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:nystfi:98-032. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/fdnyuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.