IDEAS home Printed from https://ideas.repec.org/a/eee/jfinec/v53y1999i3p313-351.html
   My bibliography  Save this article

The adaptive mesh model: a new approach to efficient option pricing

Author

Listed:
  • Figlewski, Stephen
  • Gao, Bin

Abstract

Exact closed-form valuation equations for traded derivative securities are rare. Numerical approximation, most commonly with Binomial and Trinomial lattice models, gives exact valuation in the limit, but convergence is non-monotonic and often slow, due to 'distribution error' and 'truncation error.' This paper explains how truncation error arises and describes the Adaptive Mesh Model (AMM), a new approach that sharply reduces it by grafting one or more small sections of fine high-resolution lattice onto a tree with coarser time and price steps. Three different AMM structures are presented, one for pricing ordinary options, one for barrier options, and one for computing delta and gamma efficiently. The AMM approach can be adapted to a wide variety of contingent claims, yielding significant improvement in efficiency with very little increase in computational effort. For some common problems, including calculating delta, accuracy increases by several orders of magnitude relative to the standard models with no measurable increase in execution time at all.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
  • Handle: RePEc:eee:jfinec:v:53:y:1999:i:3:p:313-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-405X(99)00024-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Rubinstein., 1991. "Exotic Options," Research Program in Finance Working Papers RPF-220, University of California at Berkeley.
    2. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    3. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(01), pages 87-100, March.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    5. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    8. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    2. Pelsser, Antoon & Salahnejhad Ghalehjooghi, Ahmad, 2016. "Time-consistent actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 97-112.
    3. Benjamin Jourdain & Antonino Zanette, 2008. "A moments and strike matching binomial algorithm for pricing American Put options," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 33-49, May.
    4. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    5. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    6. D. Andricopoulos, Ari & Widdicks, Martin & Newton, David P. & Duck, Peter W., 2007. "Extending quadrature methods to value multi-asset and complex path dependent options," Journal of Financial Economics, Elsevier, vol. 83(2), pages 471-499, February.
    7. Lihua Zhang & Weiguo Zhang & Weijun Xu & Xiang Shi, 2014. "A Modified Least-Squares Simulation Approach to Value American Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 489-506, December.
    8. Yang, Sharon S. & Dai, Tian-Shyr, 2013. "A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 231-242.
    9. Liu, Liang-Chih & Dai, Tian-Shyr & Wang, Chuan-Ju, 2016. "Evaluating corporate bonds and analyzing claim holders’ decisions with complex debt structure," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 151-174.
    10. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    11. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    12. repec:spr:comgts:v:14:y:2017:i:3:d:10.1007_s10287-017-0278-5 is not listed on IDEAS
    13. Dai, Tian-Shyr & Yang, Sharon S. & Liu, Liang-Chih, 2015. "Pricing guaranteed minimum/lifetime withdrawal benefits with various provisions under investment, interest rate and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 364-379.
    14. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    15. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    16. Chung, San-Lin & Shih, Pai-Ta & Tsai, Wei-Che, 2013. "Static hedging and pricing American knock-in put options," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 191-205.
    17. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    18. Chang, Chuang-Chang & Lin, Jun-Biao, 2010. "The valuation of contingent claims using alternative numerical methods," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 490-508, December.
    19. repec:wsi:ijtafx:v:20:y:2017:i:06:n:s021902491750042x is not listed on IDEAS
    20. Ben R. Craig & Joachim G. Keller, 2003. "The empirical performance of option-based densities of foreign exchange," Working Paper 0313, Federal Reserve Bank of Cleveland.
    21. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    22. Simona Sanfelici, 2004. "Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 125-151, December.
    23. Tian-Shyr Dai & Jr-Yan Wang & Hui-Shan Wei, 2008. "Adaptive placement method on pricing arithmetic average options," Review of Derivatives Research, Springer, vol. 11(1), pages 83-118, March.
    24. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:53:y:1999:i:3:p:313-351. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505576 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.