IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Option Pricing: Real and Risk-Neutral Distributions

Listed author(s):
  • Constantinides, George M.
  • Jackwerth, Jens Carsten
  • Perrakis, Stylianos

The central premise of the Black and Scholes [Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659] and Merton [Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science 4, 141–184] option pricing theory is that there exists a self-financing dynamic trading policy of the stock and risk free accounts that renders the market dynamically complete. This requires that the market be complete and perfect. In this essay, we are concerned with cases in which dynamic trading breaks down either because the market is incomplete or because it is imperfect due to the presence of trading costs, or both. Market incompleteness renders the risk-neutral probability measure non unique and allows us to determine the option price only within a range. Recognition of trading costs requires a refinement in the definition and usage of the concept of a risk-neutral probability measure. Under these market conditions, a replicating dynamic trading policy does not exist. Nevertheless, we are able to impose restrictions on the pricing kernel and derive testable restrictions on the prices of options.We illustrate the theory in a series of market setups, beginning with the single period model, the two-period model and, finally, the general multiperiod model, with or without transaction costs.We also review related empirical results that document widespread violations of these restrictions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/11637/1/MPRA_paper_11637.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 11637.

as
in new window

Length:
Date of creation: 2007
Handle: RePEc:pra:mprapa:11637
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, 04.
  2. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
  3. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. " General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
  4. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
  5. Ritchken, Peter H & Kuo, Shyanjaw, 1988. " Option Bounds with Finite Revision Opportunities," Journal of Finance, American Finance Association, vol. 43(2), pages 301-308, June.
  6. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
  7. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2005. "Can Standard Preferences Explain the Prices of out of the Money S&P 500 Put Options," NBER Working Papers 11861, National Bureau of Economic Research, Inc.
  8. George M. Constantinides & Jens Carsten Jackwerth & Stylianos Perrakis, 2009. "Mispricing of S&P 500 Index Options," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1247-1277, March.
  9. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
  10. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
  11. Perrakis, Stylianos, 1986. "Option Bounds in Discrete Time: Extensions and the Pricing of the American Put," The Journal of Business, University of Chicago Press, vol. 59(1), pages 119-141, January.
  12. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
  13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  14. (*), Thaleia Zariphopoulou & George M. Constantinides, 1999. "Bounds on prices of contingent claims in an intertemporal economy with proportional transaction costs and general preferences," Finance and Stochastics, Springer, vol. 3(3), pages 345-369.
  15. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. " Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
  16. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
  17. Stephen A. Ross, 1976. "Options and Efficiency," The Quarterly Journal of Economics, Oxford University Press, vol. 90(1), pages 75-89.
  18. Nicolas P. B. Bollen & Robert E. Whaley, 2004. "Does Net Buying Pressure Affect the Shape of Implied Volatility Functions?," Journal of Finance, American Finance Association, vol. 59(2), pages 711-753, 04.
  19. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  20. George M. Constantinides, 1979. "Multiperiod Consumption and Investment Behavior with Convex Transactions Costs," Management Science, INFORMS, vol. 25(11), pages 1127-1137, November.
  21. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  22. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, 08.
  23. Pedro Santa-Clara & Shu Yan, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," NBER Working Papers 10912, National Bureau of Economic Research, Inc.
  24. Levy, Haim, 1985. " Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance Approach," Journal of Finance, American Finance Association, vol. 40(4), pages 1197-1217, September.
  25. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  26. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
  27. Ryan, Peter J., 2003. "Progressive option bounds from the sequence of concurrently expiring options," European Journal of Operational Research, Elsevier, vol. 151(1), pages 193-223, November.
  28. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  29. Perrakis, Stylianos & Ryan, Peter J, 1984. " Option Pricing Bounds in Discrete Time," Journal of Finance, American Finance Association, vol. 39(2), pages 519-525, June.
  30. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  31. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
  32. David S. Bates, 2001. "The Market for Crash Risk," NBER Working Papers 8557, National Bureau of Economic Research, Inc.
  33. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
  34. Ritchken, Peter H, 1985. " On Option Pricing Bounds," Journal of Finance, American Finance Association, vol. 40(4), pages 1219-1233, September.
  35. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11637. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.