IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i1p273-285.html
   My bibliography  Save this article

Simulating the new British Electricity-Market Reform

Author

Listed:
  • Franco, Carlos J.
  • Castaneda, Monica
  • Dyner, Isaac

Abstract

The British government is implementing fully its novel Electricity Market Reform (GB EMR). Its objective, in line with European directives, aims at replacing existing nuclear and coal plant with low-carbon systems, to deliver reliable and affordable power. Though the GB EMR has proposed several policy instruments for meeting its objectives, and the academic literature has discussed the main issues, no known report includes a comprehensive and dynamic simulation exercise that assesses the extent of this profound and important initiative. This paper presents a system dynamics model that supports analysis of long-term effects of the various policy instruments that have been proposed in the GB EMR, focusing on environmental quality, security of supply and economic sustainability. Using lessons learned from simulation, the paper concludes that effectively achieving the GB EMR objectives requires this comprehensive intervention or a similar one that includes the promotion of low carbon electricity generation through the simultaneous implementation of various direct and indirect incentives, such as a carbon price floor, a Feed in Tariff (FIT) and a capacity mechanism.

Suggested Citation

  • Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:1:p:273-285
    DOI: 10.1016/j.ejor.2015.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715001605
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
    2. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    3. Ford, Andrew & Vogstad, Klaus & Flynn, Hilary, 2007. "Simulating price patterns for tradable green certificates to promote electricity generation from wind," Energy Policy, Elsevier, vol. 35(1), pages 91-111, January.
    4. Bunn, Derek W. & Oliveira, Fernando S., 2007. "Agent-based analysis of technological diversification and specialization in electricity markets," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1265-1278, September.
    5. Green, Richard, 2010. "Are the British electricity trading and transmission arrangements future-proof?," Utilities Policy, Elsevier, vol. 18(4), pages 186-194, December.
    6. Olsina, Fernando & Garces, Francisco & Haubrich, H.-J., 2006. "Modeling long-term dynamics of electricity markets," Energy Policy, Elsevier, vol. 34(12), pages 1411-1433, August.
    7. Jaehn, Florian & Letmathe, Peter, 2010. "The emissions trading paradox," European Journal of Operational Research, Elsevier, vol. 202(1), pages 248-254, April.
    8. Dhananjay Bapat, 2012. "Customer Relationship for Electronic Payment Products," Global Business Review, International Management Institute, vol. 13(1), pages 137-151, February.
    9. Moreno, Fermín & Martínez-Val, José M., 2011. "Collateral effects of renewable energies deployment in Spain: Impact on thermal power plants performance and management," Energy Policy, Elsevier, vol. 39(10), pages 6561-6574, October.
    10. ., 2012. "Electric Power," Chapters,in: Regulatory Reform of Public Utilities, chapter 3, pages 49-64 Edward Elgar Publishing.
    11. David M. Newbery, 2012. "Reforming Competitive Electricity Markets to Meet Environmental Targets," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    12. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2009. "Interactions between measures for the support of electricity from renewable energy sources and CO2 mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4743-4752, November.
    13. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    14. Ford, Andrew, 2008. "Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system," Energy Policy, Elsevier, vol. 36(1), pages 443-455, January.
    15. Green, Richard, 2006. "Market power mitigation in the UK power market," Utilities Policy, Elsevier, vol. 14(2), pages 76-89, June.
    16. Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
    17. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    18. Guigang Zhang & Chao Li & Sixin Xue & Yuenan Liu & Yong Zhang & Chunxiao Xing, 2012. "A New Electronic Commerce Architecture in the Cloud," Journal of Electronic Commerce in Organizations (JECO), IGI Global, vol. 10(4), pages 42-56, October.
    19. Bunn, Derek W & Larsen, Erik R, 1994. "Assessment of the uncertainty in future UK electricity investment using an industry simulation model," Utilities Policy, Elsevier, vol. 4(3), pages 229-236, July.
    20. Anderson, E.J. & Cau, T.D.H., 2011. "Implicit collusion and individual market power in electricity markets," European Journal of Operational Research, Elsevier, vol. 211(2), pages 403-414, June.
    21. Kirat, Djamel & Ahamada, Ibrahim, 2011. "The impact of the European Union emission trading scheme on the electricity-generation sector," Energy Economics, Elsevier, vol. 33(5), pages 995-1003, September.
    22. Linares, P. & Santos, F.J. & Pérez-Arriaga, I.J., 2008. "Scenarios for the evolution of the Spanish electricity sector: Is it on the right path towards sustainability?," Energy Policy, Elsevier, vol. 36(11), pages 4057-4068, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    2. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    3. repec:eee:renene:v:126:y:2018:i:c:p:765-773 is not listed on IDEAS
    4. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    5. Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
    6. repec:eee:rensus:v:80:y:2017:i:c:p:341-351 is not listed on IDEAS
    7. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    8. repec:eee:enepol:v:110:y:2017:i:c:p:105-116 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:1:p:273-285. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.