IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v24y2016i1p231-261.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Energy related system dynamic models: a literature review

Author

Listed:
  • Armin Leopold

Abstract

System dynamics is extensively used as a decision support method in the energy sector. There exists a wide body of applications worldwide that are used not only within power companies but also by governmental agencies at the regional and national level. This review includes most of the relevant energy publications related to system dynamics and presents them within a literature review table divided into four key energy topics. This literature review is carried out in a chronological way and focuses on the period since the year 2000. The main purpose of this study is to summarise the remarkable body of work and the latest system dynamics trends related to the energy sector, in particular renewable energy that system dynamics practitioners have accumulated in the last 15 years. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
  • Handle: RePEc:spr:cejnor:v:24:y:2016:i:1:p:231-261
    DOI: 10.1007/s10100-015-0417-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-015-0417-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-015-0417-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    2. Qudrat-Ullah, H & Davidsen, Pal I, 2001. "Understanding the dynamics of electricity supply, resources and pollution: Pakistan's case," Energy, Elsevier, vol. 26(6), pages 595-606.
    3. Ponzo, Ricardo & Dyner, Isaac & Arango, Santiago & Larsen, Erik R., 2011. "Regulation and development of the Argentinean gas market," Energy Policy, Elsevier, vol. 39(3), pages 1070-1079, March.
    4. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    5. Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
    6. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    7. Bo Hu & Armin Leopold & Stefan Pickl, 2015. "Concept and prototype of a web tool for public–private project contracting based on a system dynamics model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 407-419, June.
    8. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
    9. Pasaoglu Kilanc, Guzay & Or, Ilhan, 2008. "A decision support tool for the analysis of pricing, investment and regulatory processes in a decentralized electricity market," Energy Policy, Elsevier, vol. 36(8), pages 3026-3034, August.
    10. Eker, Sibel & van Daalen, Els, 2015. "A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty," Energy Policy, Elsevier, vol. 82(C), pages 178-196.
    11. Chi, K.C. & Reiner, D.M. & Nuttall, W.J., 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Cambridge Working Papers in Economics 0922, Faculty of Economics, University of Cambridge.
    12. Forrester, Jay W., 1992. "Policies, decisions and information sources for modeling," European Journal of Operational Research, Elsevier, vol. 59(1), pages 42-63, May.
    13. Ford, Andrew, 2001. "Waiting for the boom: : a simulation study of power plant construction in California," Energy Policy, Elsevier, vol. 29(11), pages 847-869, September.
    14. Kunsch, Pierre L. & Friesewinkel, Jean, 2014. "Nuclear energy policy in Belgium after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 462-474.
    15. Pierre Louis Kunsch & Jean Friesewinkel, 2014. "Nuclear energy policy in Belgium after Fukushima," ULB Institutional Repository 2013/189447, ULB -- Universite Libre de Bruxelles.
    16. Tao, Zaipu & Li, Mingyu, 2007. "System dynamics model of Hubbert Peak for China's oil," Energy Policy, Elsevier, vol. 35(4), pages 2281-2286, April.
    17. Tang, Xu & Zhang, Baosheng & Höök, Mikael & Feng, Lianyong, 2010. "Forecast of oil reserves and production in Daqing oilfield of China," Energy, Elsevier, vol. 35(7), pages 3097-3102.
    18. Bo Hu & Armin Leopold & Stefan Pickl, 2013. "Transition Towards Renewable Energy Supply—A System Dynamics Approach," Dynamic Modeling and Econometrics in Economics and Finance, in: Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), Green Growth and Sustainable Development, edition 127, pages 217-226, Springer.
    19. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    20. Ford, Andrew & Vogstad, Klaus & Flynn, Hilary, 2007. "Simulating price patterns for tradable green certificates to promote electricity generation from wind," Energy Policy, Elsevier, vol. 35(1), pages 91-111, January.
    21. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    22. Aleksandar Dimitrovski & Andrew Ford & Kevin Tomsovic, 2007. "An interdisciplinary approach to long-term modelling for power system expansion," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 3(1/2), pages 235-264.
    23. Hoffmann, Bastian & Häfele, Sebastian & Karl, Ute, 2013. "Analysis of performance losses of thermal power plants in Germany – A System Dynamics model approach using data from regional climate modelling," Energy, Elsevier, vol. 49(C), pages 193-203.
    24. Ford, Andrew, 2005. "Simulating the impacts of a strategic fuels reserve in California," Energy Policy, Elsevier, vol. 33(4), pages 483-498, March.
    25. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    26. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    27. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    28. Wu, Jung-Hua & Huang, Yi-Lung & Liu, Chang-Chen, 2011. "Effect of floating pricing policy: An application of system dynamics on oil market after liberalization," Energy Policy, Elsevier, vol. 39(7), pages 4235-4252, July.
    29. Olsina, Fernando & Garces, Francisco & Haubrich, H.-J., 2006. "Modeling long-term dynamics of electricity markets," Energy Policy, Elsevier, vol. 34(12), pages 1411-1433, August.
    30. Fan, Ying & Yang, Rui-Guang & Wei, Yi-Ming, 2007. "A system dynamics based model for coal investment," Energy, Elsevier, vol. 32(6), pages 898-905.
    31. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    32. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    33. Ochoa, Patricia & van Ackere, Ann, 2009. "Policy changes and the dynamics of capacity expansion in the Swiss electricity market," Energy Policy, Elsevier, vol. 37(5), pages 1983-1998, May.
    34. Jeong, Suk-Jae & Kim, Kyung-Sup & Park, Jin-Won & Lim, Dong-soon & Lee, Seung-moon, 2008. "Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case," Energy, Elsevier, vol. 33(8), pages 1320-1330.
    35. Pereira, Adelino J.C. & Saraiva, João Tomé, 2013. "Long term impact of wind power generation in the Iberian day-ahead electricity market price," Energy, Elsevier, vol. 55(C), pages 1159-1171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdem Kilic & Serkan Cankaya, 2020. "Oil prices and economic activity in BRICS and G7 countries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1315-1342, December.
    2. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    3. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    4. Jahani, Hamed & Gholizadeh, Hadi & Hayati, Zahra & Fazlollahtabar, Hamed, 2023. "Investment risk assessment of the biomass-to-energy supply chain using system dynamics," Renewable Energy, Elsevier, vol. 203(C), pages 554-567.
    5. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    6. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    7. Rizqi, Zakka Ugih & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2023. "Green energy mix modeling under supply uncertainty: Hybrid system dynamics and adaptive PSO approach," Applied Energy, Elsevier, vol. 349(C).
    8. Lubing Xie & Xiaoming Rui & Shuai Li & Xiaozhao Fan & Ruijing Shi & Guohua Li, 2018. "A Critical Analysis on Influential Factors on Power Energy Resources in China," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 1-1, February.
    9. Karol Szomolanyi & Martin Lukacik & Adriana Lukacikova, 2022. "Estimation of asymmetric responses of U.S. retail fuel prices to changes in input prices based on a linear exponential adjustment cost approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 757-779, June.
    10. Immanuel Bomze & Karl F. Dörner & Richard F. Hartl & Ulrike Leopold-Wildburger & Georg Pflug & Marion Rauner & Christian Stummer & Gernot Tragler & Tina Wakolbinger, 2018. "Emerging and innovative OR applications: a special issue in honor of Walter J. Gutjahr," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 259-263, June.
    11. Mostafaeipour, Ali & Bidokhti, Abbas & Fakhrzad, Mohammad-Bagher & Sadegheih, Ahmad & Zare Mehrjerdi, Yahia, 2022. "A new model for the use of renewable electricity to reduce carbon dioxide emissions," Energy, Elsevier, vol. 238(PA).
    12. Heidarizadeh, Mohammad & Ahmadian, Mohammad, 2019. "Capacity certificate mechanism: A step forward toward a market based generation capacity incentive," Energy, Elsevier, vol. 172(C), pages 45-56.
    13. You-hua Chen & Chan Wang & Pu-yan Nie, 2020. "Emission regulation of conventional energy-intensive industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3723-3737, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    2. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    4. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    5. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    6. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    7. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    8. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    9. Blumberga, Dagnija & Blumberga, Andra & Barisa, Aiga & Rosa, Marika & Lauka, Dace, 2016. "Modelling the Latvian power market to evaluate its environmental long-term performance," Applied Energy, Elsevier, vol. 162(C), pages 1593-1600.
    10. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    11. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2013. "Dynamic analysis of various investment incentives and regional capacity assignment in Iranian electricity market," Energy Policy, Elsevier, vol. 56(C), pages 271-284.
    12. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    13. Hasani, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms," Energy, Elsevier, vol. 36(1), pages 277-293.
    14. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power," Renewable Energy, Elsevier, vol. 36(8), pages 2205-2219.
    15. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    16. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    17. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
    18. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    19. Jianzhong Xiao & Jinhua Cheng & Jun Shen & Xiaolin Wang, 2017. "A System Dynamics Analysis of Investment, Technology and Policy that Affect Natural Gas Exploration and Exploitation in China," Energies, MDPI, vol. 10(2), pages 1-19, January.
    20. Hsiao, Chih-Tung & Liu, Chung-Shu & Chang, Dong-Shang & Chen, Chun-Cheng, 2018. "Dynamic modeling of the policy effect and development of electric power systems: A case in Taiwan," Energy Policy, Elsevier, vol. 122(C), pages 377-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:24:y:2016:i:1:p:231-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.