IDEAS home Printed from
   My bibliography  Save this article

Patterns in stock market movements tested as random number generators


  • Doyle, John R.
  • Chen, Catherine H.


This paper shows that tests of Random Number Generators (RNGs) may be used to test the Efficient Market Hypothesis (EMH). It uses the Overlapping Serial Test (OST), a standard test in RNG research, to detect anomalous patterns in the distribution of sequences of stock market movements up and down. Our results show that most stock markets exhibit idiosyncratic recurrent patterns, contrary to the efficient market hypothesis; also that OST detects a different kind of non-randomness to standard econometric long- and short-memory tests. Exposure of these anomalies should contribute to making markets more efficient.

Suggested Citation

  • Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:1:p:122-132 DOI: 10.1016/j.ejor.2012.11.057

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ziemba, William T., 1994. "World wide security market regularities," European Journal of Operational Research, Elsevier, vol. 74(2), pages 198-229, April.
    2. Yang, Jian & Cabrera, Juan & Wang, Tao, 2010. "Nonlinearity, data-snooping, and stock index ETF return predictability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 498-507, January.
    3. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    4. Alex Edmans & Diego García & Øyvind Norli, 2007. "Sports Sentiment and Stock Returns," Journal of Finance, American Finance Association, vol. 62(4), pages 1967-1998, August.
    5. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    6. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    7. David Hirshleifer & Tyler Shumway, 2003. "Good Day Sunshine: Stock Returns and the Weather," Journal of Finance, American Finance Association, vol. 58(3), pages 1009-1032, June.
    8. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    9. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    10. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance,in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974 Elsevier.
    11. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    12. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    13. Bellini, Fabio & Figa-Talamanca, Gianna, 2005. "Runs tests for assessing volatility forecastability in financial time series," European Journal of Operational Research, Elsevier, vol. 163(1), pages 102-114, May.
    14. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    16. Rozeff, Michael S. & Kinney, William Jr., 1976. "Capital market seasonality: The case of stock returns," Journal of Financial Economics, Elsevier, vol. 3(4), pages 379-402, October.
    17. Marsaglia, George & Tsang, Wai Wan, 2002. "Some Difficult-to-pass Tests of Randomness," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i03).
    18. Hui, Tak-Kee, 2005. "Day-of-the-week effects in US and Asia-Pacific stock markets during the Asian financial crisis: a non-parametric approach," Omega, Elsevier, vol. 33(3), pages 277-282, June.
    19. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    20. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    21. Nicolau, Juan L., 2012. "The effect of winning the 2010 FIFA World Cup on the tourism market value: The Spanish case," Omega, Elsevier, vol. 40(5), pages 503-510.
    22. Doyle, John R. & Chen, Catherine Huirong, 2012. "A multidimensional classification of market anomalies: Evidence from 76 price indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1237-1257.
    23. Christopher T. Ball, 2012. "Not all streaks are the same: Individual differences in risk preferences during runs of gains and losses," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(4), pages 452-461, July.
    24. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    25. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    26. Marsaglia, George, 2005. "Monkeying with the Goodness-of-Fit Test," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i13).
    27. Loughin, Thomas M., 2004. "A systematic comparison of methods for combining p-values from independent tests," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 467-485, October.
    28. Hui, T-K & Kwan, EK, 1994. "International portfolio diversification: A factor analysis approach," Omega, Elsevier, vol. 22(3), pages 263-267, May.
    29. Canal, Luisa, 2005. "A normal approximation for the chi-square distribution," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 803-808, April.
    30. Tabak, Benjamin M. & Lima, Eduardo J.A., 2009. "Market efficiency of Brazilian exchange rate: Evidence from variance ratio statistics and technical trading rules," European Journal of Operational Research, Elsevier, vol. 194(3), pages 814-820, May.
    31. Lim, Kian-Ping, 2007. "Ranking market efficiency for stock markets: A nonlinear perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 445-454.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    2. repec:spr:annopr:v:243:y:2016:i:1:d:10.1007_s10479-014-1751-y is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:1:p:122-132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.