IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v26y2018icp1-18.html
   My bibliography  Save this article

Causal inference in travel demand modeling (and the lack thereof)

Author

Listed:
  • Brathwaite, Timothy
  • Walker, Joan L.

Abstract

This paper is about the general disconnect that we see, both in practice and in literature, between the disciplines of travel demand modeling and causal inference. In this paper, we assert that travel demand modeling should be one of the many fields that focuses on the production of valid causal inferences, and we hypothesize about reasons for the current disconnect between the two bodies of research. Furthermore, we explore the potential benefits of uniting these two disciplines. We consider what travel demand modeling can gain from greater incorporation of techniques and perspectives from the causal inference literatures, and we briefly discuss what the causal inference literature might gain from the work of travel demand modelers. In this paper, we do not attempt to “solve” issues related to the drawing of causal inferences from travel demand models. Instead, we hope to spark a larger discussion both within and between the travel demand modeling and causal inference literatures. In particular, we hope to incite discussion about the necessity of drawing causal inferences in travel demand applications and the methods by which one might credibly do so.

Suggested Citation

  • Brathwaite, Timothy & Walker, Joan L., 2018. "Causal inference in travel demand modeling (and the lack thereof)," Journal of choice modelling, Elsevier, vol. 26(C), pages 1-18.
  • Handle: RePEc:eee:eejocm:v:26:y:2018:i:c:p:1-18
    DOI: 10.1016/j.jocm.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534517301148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordan Louviere & Kenneth Train & Moshe Ben-Akiva & Chandra Bhat & David Brownstone & Trudy Cameron & Richard Carson & J. Deshazo & Denzil Fiebig & William Greene & David Hensher & Donald Waldman, 2005. "Recent Progress on Endogeneity in Choice Modeling," Marketing Letters, Springer, vol. 16(3), pages 255-265, December.
    2. Marsden, Greg & Docherty, Iain, 2013. "Insights on disruptions as opportunities for transport policy change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 46-55.
    3. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    4. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    5. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    6. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    7. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    8. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part II," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-33, February.
    9. Dagsvik, John K, 2017. "Invariance Axioms and Functional Form Restrictions in Structural Models," Memorandum 08/2017, Oslo University, Department of Economics.
    10. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    11. Andre Carrel & Raja Sengupta & Joan L. Walker, 2017. "The San Francisco Travel Quality Study: tracking trials and tribulations of a transit taker," Transportation, Springer, vol. 44(4), pages 643-679, July.
    12. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    13. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    14. Tikka, Santtu & Karvanen, Juha, 2017. "Identifying Causal Effects with the R Package causaleffect," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i12).
    15. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    16. Steffen L. Lauritzen & Thomas S. Richardson, 2002. "Chain graph models and their causal interpretations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 321-348, August.
    17. Keele, Luke, 2015. "The Statistics of Causal Inference: A View from Political Methodology," Political Analysis, Cambridge University Press, vol. 23(3), pages 313-335, July.
    18. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    19. Eleanor McDonnell Feit & Mark A. Beltramo & Fred M. Feinberg, 2010. "Reality Check: Combining Choice Experiments with Market Data to Estimate the Importance of Product Attributes," Management Science, INFORMS, vol. 56(5), pages 785-800, May.
    20. Agyemang-Duah, Kwaku & Hall, Fred L., 1997. "Spatial transferability of an ordered response model of trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 389-402, September.
    21. repec:bla:econom:v:47:y:1980:i:188:p:387-406 is not listed on IDEAS
    22. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    23. Min Ding & Rajdeep Grewal & John Liechty, 2005. "Incentive-aligned conjoint analysis," Framed Field Experiments 00139, The Field Experiments Website.
    24. Fifer, Simon & Rose, John M., 2016. "Can you ever be certain? Reducing hypothetical bias in stated choice experiments via respondent reported choice certaintyAuthor-Name: Beck, Matthew J," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 149-167.
    25. James J. Heckman, 2000. "Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 45-97.
    26. Chung, Yi-Shih & Chiou, Yu-Chiun, 2017. "Willingness-to-pay for a bus fare reform: A contingent valuation approach with multiple bound dichotomous choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 289-304.
    27. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    28. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    29. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    30. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    31. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    32. Leontief, Wassily, 1971. "Theoretical Assumptions and Nonobserved Facts," American Economic Review, American Economic Association, vol. 61(1), pages 1-7, March.
    33. Joshua D. Angrist & Jörn-Steffen Pischke, 2015. "The path from cause to effect: mastering 'metrics," CentrePiece - The magazine for economic performance 442, Centre for Economic Performance, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Eui-Jin & Bansal, Prateek, 2024. "A new flexible and partially monotonic discrete choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Vass, Caroline M. & Boeri, Marco & Poulos, Christine & Turner, Alex J., 2022. "Matching and weighting in stated preferences for health care," Journal of choice modelling, Elsevier, vol. 44(C).
    3. Robert Kölbl & Martin Kozek, 2021. "A physiological model of human mobility: A global study," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
    4. Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).
    5. Andreoni, Antonio & van Huellen, Sophie & Katera, Lucas & Jahari, Cornel, 2024. "How to overcome rent seeking in Tanzania’s skills sector? Exploring feasible reforms through discrete choice experiments," World Development, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helveston, John Paul & Feit, Elea McDonnell & Michalek, Jeremy J., 2018. "Pooling stated and revealed preference data in the presence of RP endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 70-89.
    2. Gabriel Okasa & Kenneth A. Younge, 2022. "Sample Fit Reliability," Papers 2209.06631, arXiv.org.
    3. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    5. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    6. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    8. Matthew A. Masten & Alexandre Poirier & Linqi Zhang, 2024. "Assessing Sensitivity to Unconfoundedness: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 1-13, January.
    9. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    10. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    11. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Boris Salazar-Trujillo & Daniel Otero Robles, 2019. "La revolución empírica en economía," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 38(68), pages 15-48, July.
    13. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    14. Fabio Pammolli & Paolo Bonaretti & Massimo Riccaboni & Valentina Tortolini, 2019. "Quali Regole per la Spesa Farmaceutica? - Criticità, Impatti, Proposte," Working Papers CERM 01-2019, Competitività, Regole, Mercati (CERM).
    15. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    16. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part II. Macro-scale analysis of literature and effectiveness of bias mitigation methods," Papers 2102.02945, arXiv.org.
    17. Bernard Black & Woochan Kim & Julia Nasev, 2021. "The Effect of Board Structure on Firm Disclosure and Behavior: A Case Study of Korea and a Comparison of Research Designs," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 18(2), pages 328-376, June.
    18. David Card, 2022. "Design-Based Research in Empirical Microeconomics," American Economic Review, American Economic Association, vol. 112(6), pages 1773-1781, June.
    19. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    20. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:26:y:2018:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.