IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipbs0304407625000533.html
   My bibliography  Save this article

Quantile prediction with factor-augmented regression: Structural instability and model uncertainty

Author

Listed:
  • Tu, Yundong
  • Wang, Siwei

Abstract

The quantile regression is an effective tool in modeling data with heterogeneous conditional distribution. This paper considers the time-varying coefficient quantile predictive regression with factor-augmented predictors, to capture smooth structural changes and incorporate high-dimensional data information in prediction simultaneously. Uniform consistency of the local linear quantile coefficient estimators is established under misspecification. To further improve the forecast accuracy, a novel time-varying model averaging based on local forward-validation is developed. The averaging estimator is shown to be asymptotically optimal in the sense of minimizing out-of-sample forecast risk function. Furthermore, the weight selection consistency and the asymptotic distribution of the averaging coefficient estimator are established. Numerical results from simulations and a real data application to forecasting U.S. inflation demonstrate the nice performance of the averaging estimators.

Suggested Citation

  • Tu, Yundong & Wang, Siwei, 2025. "Quantile prediction with factor-augmented regression: Structural instability and model uncertainty," Journal of Econometrics, Elsevier, vol. 249(PB).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000533
    DOI: 10.1016/j.jeconom.2025.105999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625000533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.105999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Factor model; Forward-validation; Local stationarity; Model misspecification; Time-varying parameters;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.