IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/274717.html
   My bibliography  Save this paper

Model Selection in Factor-Augmented Regressions with Estimated Factors

Author

Listed:
  • Djogbenou, Antoine A.

Abstract

This paper proposes two consistent model selection procedures for factor-augmented regressions in finite samples. We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to factor-augmented regressions. We show that this procedure is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and factors extracted from a large panel of United States macroeconomic and financial data is conducted. Our new procedures select factors that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns.

Suggested Citation

  • Djogbenou, Antoine A., 2017. "Model Selection in Factor-Augmented Regressions with Estimated Factors," Queen's Economics Department Working Papers 274717, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:274717
    DOI: 10.22004/ag.econ.274717
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/274717/files/qed_wp_1391.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.274717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:274717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.