IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v230y2025ics0921800924003963.html
   My bibliography  Save this article

Economic valuation of groundwater over-exploitation in the Maghreb

Author

Listed:
  • Zaatra, Abderraouf
  • Kleftodimos, Georgios
  • Requier-Desjardins, Mélanie
  • Belhouchette, Hatem

Abstract

The agricultural sector is recognized as particularly vulnerable to the effects of climate change. In semi-arid areas, the performance and durability of irrigated systems are often difficult to manage. Understanding agriculture's response to water scarcity, institutional change and policy interventions is important in order to better define the different agricultural development pathways. The purpose of this paper is to carry out an economic assessment of the costs of groundwater over-exploitation in the Maghreb. This was achieved by using bio-economic modeling in three case studies: the Saïss plain (Morocco), El Haouaria plain (Tunisia) and Sétif plain (Algeria). A set of indicators (land use, farm gross margin, the dual value of water and labor requirements) was calculated for each case study in two scenarios (a business-as-usual (S_BAU) scenario and a return-to-equilibrium (S_RtE) scenario) over a period of 15 years, from 2021 to 2035. Our results show that (i) the state of the aquifer and its over-exploitation level determine the extent of future changes; (ii) in the case of significant groundwater over-exploitation, restoration costs are higher than over-exploitation costs (Saïss plain); on the other hand, in the case where the over-exploitation rate is lower (El Haouaria and Sétif plains), the over-exploitation and restoration costs are close; (iii) both scenarios show significant structural and social changes, and without the effective implementation of environmental and social policies, they lead to high economic losses.

Suggested Citation

  • Zaatra, Abderraouf & Kleftodimos, Georgios & Requier-Desjardins, Mélanie & Belhouchette, Hatem, 2025. "Economic valuation of groundwater over-exploitation in the Maghreb," Ecological Economics, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:ecolec:v:230:y:2025:i:c:s0921800924003963
    DOI: 10.1016/j.ecolecon.2024.108499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800924003963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2024.108499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    2. Kleftodimos, Georgios & Gallai, Nicola & Rozakis, Stelios & Képhaliacos, Charilaos, 2021. "A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms," Land Use Policy, Elsevier, vol. 107(C).
    3. Unfried, Kerstin & Kis-Katos, Krisztina & Poser, Tilman, 2022. "Water scarcity and social conflict," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    4. John Rolfe & Brenda Dyack, 2010. "Testing for convergent validity between travel cost and contingent valuation estimates of recreation values in the Coorong, Australia ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 583-599, October.
    5. Ma, Fengjiao & Gao, Hui & Eneji, A. Egrinya & Jin, Zhanzhong & Han, Lipu & Liu, Jintong, 2016. "An economic valuation of groundwater management for Agriculture in Luancheng county, North China," Agricultural Water Management, Elsevier, vol. 163(C), pages 28-36.
    6. Komarek, Adam M. & Drogue, Sophie & Chenoune, Roza & Hawkins, James & Msangi, Siwa & Belhouchette, Hatem & Flichman, Guillermo, 2017. "Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi," Agricultural Systems, Elsevier, vol. 154(C), pages 168-178.
    7. Cécile Hérivaux & Jean-Daniel Rinaudo, 2016. "Integrated Assessment of Economic Benefits of Groundwater Improvement with Contingent Valuation," Post-Print hal-03184189, HAL.
    8. Hayri Önal & Bruce A. McCarl, 1991. "Exact Aggregation in Mathematical Programming Sector Models," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 39(2), pages 319-334, July.
    9. Ibáñez, Javier & Valderrama, Jaime Martínez & Puigdefábregas, Juan, 2008. "Assessing overexploitation in Mediterranean aquifers using system stability condition analysis," Ecological Modelling, Elsevier, vol. 218(3), pages 260-266.
    10. Louhichi, Kamel & Gomez y Paloma, Sergio, 2014. "A farm household model for agri-food policy analysis in developing countries: Application to smallholder farmers in Sierra Leone," Food Policy, Elsevier, vol. 45(C), pages 1-13.
    11. Del Corso, Jean-Pierre & Kephaliacos, Charilaos & Plumecocq, Gaël, 2015. "Legitimizing farmers' new knowledge, learning and practices through communicative action: Application of an agro-environmental policy," Ecological Economics, Elsevier, vol. 117(C), pages 86-96.
    12. Intissar Ferchichi & Insaf Mekki & Mohamed Elloumi & Lamia Arfa & Sylvie Lardon, 2020. "Actors, Scales and Spaces Dynamics Linked to Groundwater Resources use for Agriculture Production in Haouaria Plain, Tunisia. A Territory Game Approach," Land, MDPI, vol. 9(3), pages 1-15, March.
    13. Lelia Croitoru & Maria Sarraf, 2010. "The Cost of Environmental Degradation : Case Studies from the Middle East and North Africa," World Bank Publications - Books, The World Bank Group, number 2499, April.
    14. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    15. repec:sae:envval:v:26:y:2017:i:2:p:177-202 is not listed on IDEAS
    16. Koundouri, Phoebe & Roseta-Palma, Catarina & Englezos, Nikolaos, 2017. "Out of Sight, Not Out of Mind: Developments in Economic Models of Groundwater Management," International Review of Environmental and Resource Economics, now publishers, vol. 11(1), pages 55-96, October.
    17. Rania Soula & Ali Chebil & Rajouene Majdoub & Daniel Crespo & José Albiac & Taher Kahil, 2023. "Evaluation of the Impact of Groundwater Management Policies Under Climate and Economic Changes in Tunisia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-51, March.
    18. Pulido-Velazquez, Manuel & Andreu, Joaqui­n & Sahuquillo, Andrés & Pulido-Velazquez, David, 2008. "Hydro-economic river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain," Ecological Economics, Elsevier, vol. 66(1), pages 51-65, May.
    19. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    20. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    21. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    22. Pereau, Jean-Christophe & Pryet, Alexandre & Rambonilaza, Tina, 2019. "Optimality Versus Viability in Groundwater Management with Environmental Flows," Ecological Economics, Elsevier, vol. 161(C), pages 109-120.
    23. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
    24. Tiwari, D. N. & Loof, R. & Paudyal, G. N., 1999. "Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques," Agricultural Systems, Elsevier, vol. 60(2), pages 99-112, May.
    25. Blanco-Gutiérrez, Irene & Varela-Ortega, Consuelo & Flichman, Guillermo, 2011. "Cost-effectiveness of groundwater conservation measures: A multi-level analysis with policy implications," Agricultural Water Management, Elsevier, vol. 98(4), pages 639-652, February.
    26. Subade, Rodelio F. & Francisco, Herminia A., 2014. "Do non-users value coral reefs?: Economic valuation of conserving Tubbataha Reefs, Philippines," Ecological Economics, Elsevier, vol. 102(C), pages 24-32.
    27. Petr Havlík & Patrick Veysset & Jean-Marie Boisson & Michel Lherm & Florence Jacquet, 2005. "Joint production under uncertainty and multifunctionality of agriculture: policy considerations and applied analysis," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 32(4), pages 489-515, December.
    28. Jean-Pierre del Corso & Thi Dieu Phuong Geneviève Nguyen & Charilaos Kephaliacos, 2017. "Acceptance of a Payment for Ecosystem Services Scheme: The Decisive Influence of Collective Action," Post-Print hal-01493972, HAL.
    29. Loomis, John & Haefele, Michelle, 2017. "Quantifying Market and Non-market Benefits and Costs of Hydraulic Fracturing in the United States: A Summary of the Literature," Ecological Economics, Elsevier, vol. 138(C), pages 160-167.
    30. Petr Havlík & Patrick Veysset & Jean-Marie Boisson & Michel M. Lherm & Florence F. Jacquet, 2005. "Joint production under uncertainty and multifunctionality of agriculture : policy considerations and applied analysis [[Production jointe sous incertitude et multifonctionnalité : considérations po," Post-Print hal-02680361, HAL.
    31. Daniel Crespo & Jose Albiac & Taher Kahil & Encarna Esteban & Safa Baccour, 2019. "Tradeoffs between Water Uses and Environmental Flows: A Hydroeconomic Analysis in the Ebro Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2301-2317, May.
    32. Patrick Dugué & Caroline Lejars & Fatah Ameur & Farida Amichi & Houssem Braiki & Julien Burte & Mostafa Errahj & Meriem Hamamouche & Marcel Kuper, 2014. "Recompositions des agricultures familiales au Maghreb : une analyse comparative dans trois situations d'irrigation avec les eaux souterraines," Revue Tiers-Monde, Armand Colin, vol. 0(4), pages 99-118.
    33. G Lien & JB Hardaker, 2001. "Whole-farm planning under uncertainty: impacts of subsidy scheme and utility function on portfolio choice in Norwegian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 28(1), pages 17-36, March.
    34. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    35. Shiferaw, Bekele & Reddy, V. Ratna & Wani, Suhas P., 2008. "Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies," Ecological Economics, Elsevier, vol. 67(2), pages 327-340, September.
    36. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    37. Suter, Jordan F. & Rouhi Rad, Mani & Manning, Dale T. & Goemans, Chris & Sanderson, Matthew R., 2021. "Depletion, climate, and the incremental value of groundwater," Resource and Energy Economics, Elsevier, vol. 63(C).
    38. Bruce A. McCarl, 1982. "Cropping Activities in Agricultural Sector Models: A Methodological Proposal," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 768-772.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    2. Encarna Esteban & Elena Calvo & Jose Albiac, 2021. "Ecosystem Shifts: Implications for Groundwater Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 483-510, July.
    3. Kleftodimos, Georgios & Gallai, Nicola & Rozakis, Stelios & Képhaliacos, Charilaos, 2021. "A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms," Land Use Policy, Elsevier, vol. 107(C).
    4. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    5. Franz Sinabell & Martin Schönhart & Erwin Schmid, 2015. "Austrian Agriculture 2010-2050. Quantitative Effects of Climate Change Mitigation Measures – An Analysis of the Scenarios WEM, WAM and a Sensitivity Analysis of the Scenario WEM," WIFO Studies, WIFO, number 58400, July.
    6. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    7. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    8. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    9. Schmid, Erwin & Sinabell, Franz, 2005. "Evaluation Of Decoupling Scenarios in a Rural Development Context: Results for Austria," 89th Seminar, February 2-5, 2005, Parma, Italy 239278, European Association of Agricultural Economists.
    10. Faye, Amy & Msangi, Siwa, 2018. "Rainfall variability and groundwater availability for irrigation in Sub-Saharan Africa: evidence from the Niayes region of Senegal," MPRA Paper 92388, University Library of Munich, Germany.
    11. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.
    12. Schmid, Erwin & Sinabell, Franz, 2005. "Using the Positive Mathematical Programming Method to Calibrate Linear Programming Models," Discussion Papers DP-10-2005, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    13. Schmid, Erwin & Sinabell, Franz, 2004. "Multifunctionality of Agriculture: Political Concepts, Analytical Challenges and an Empirical Case Study," Discussion Papers DP-08-2004, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    14. Maxwell Mkondiwa & Jeffrey Apland, 2022. "Inter-district food flows in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1553-1568, December.
    15. Phoebe Koundouri & Ebun Akinsete & Nikolaos Englezos & Xanthi Kartala & Ioannis Souliotis & Josef Adler, 2017. "Economic instruments, behaviour and incentives in groundwater management," DEOS Working Papers 1711, Athens University of Economics and Business.
    16. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2014. "Modelling Bi-lateral Forest Product Trade Flows: Experiencing Vertical and Horizontal Chain Optimization," Working Papers 197898, University of Victoria, Resource Economics and Policy.
    17. Ricome, Aymeric & Chaib, Karim & Ridier, Aude & Kephaliacos, Charilaos & Carpy-Goulard, Francoise, 2016. "The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(3), pages 1-29.
    18. Marta Biancardi & Gianluca Iannucci & Giovanni Villani, 2022. "Groundwater Exploitation and Illegal Behaviors in a Differential Game," Dynamic Games and Applications, Springer, vol. 12(3), pages 996-1009, September.
    19. Schmid, Erwin, 2004. "Das Betriebsoptimierungssystem FAMOS - FArM Optimization System," Discussion Papers DP-09-2004, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    20. Sapino, Francesco & Hazimeh, Rim & Dionisio Pérez-Blanco, C. & Jaafar, Hadi H., 2024. "Socioeconomic impact of agricultural water reallocation policies in the Upper Litani Basin (Lebanon): a remote sensing and microeconomic ensemble forecasting approach," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:230:y:2025:i:c:s0921800924003963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.