IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v170y2020ics0921800919308559.html
   My bibliography  Save this article

Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study

Author

Listed:
  • Fraccascia, Luca

Abstract

This paper explores the direct network effect for online platforms supporting industrial symbiosis (IS), which is a recommended strategy to support the transition towards the circular economy. Through IS, companies can use wastes produced by other companies as inputs to production processes. Online platforms supporting companies in operating IS relationships can play a critical role in developing the IS practice.

Suggested Citation

  • Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:ecolec:v:170:y:2020:i:c:s0921800919308559
    DOI: 10.1016/j.ecolecon.2019.106587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800919308559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2019.106587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jooyoung Park & Juanita Duque-Hernández & Nohora Díaz-Posada, 2018. "Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    2. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    3. Fraccascia, Luca & Albino, Vito & Garavelli, Claudio A., 2017. "Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 273-286.
    4. Howard Pack & Kamal Saggi, 2006. "Is There a Case for Industrial Policy? A Critical Survey," The World Bank Research Observer, World Bank, vol. 21(2), pages 267-297.
    5. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    6. Pack, Howard & Saggi, Kamal, 2006. "The case for industrial policy : a critical survey," Policy Research Working Paper Series 3839, The World Bank.
    7. Hyeong†Woo Kim & Satoshi Ohnishi & Minoru Fujii & Tsuyoshi Fujita & Hung†Suck Park, 2018. "Evaluation and Allocation of Greenhouse Gas Reductions in Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 275-287, April.
    8. Eickelpasch, Alexander & Fritsch, Michael, 2005. "Contests for cooperation--A new approach in German innovation policy," Research Policy, Elsevier, vol. 34(8), pages 1269-1282, October.
    9. Giannoccaro, Ilaria & Carbone, Giuseppe, 2017. "An Ising-based dynamic model to study the effect of social interactions on firm absorptive capacity," International Journal of Production Economics, Elsevier, vol. 194(C), pages 214-227.
    10. Simboli, Alberto & Taddeo, Raffaella & Morgante, Anna, 2015. "The potential of Industrial Ecology in agri-food clusters (AFCs): A case study based on valorisation of auxiliary materials," Ecological Economics, Elsevier, vol. 111(C), pages 65-75.
    11. Marian Chertow & John Ehrenfeld, 2012. "Organizing Self‐Organizing Systems," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 13-27, February.
    12. Taddeo, Raffaella & Simboli, Alberto & Morgante, Anna & Erkman, Suren, 2017. "The Development of Industrial Symbiosis in Existing Contexts. Experiences From Three Italian Clusters," Ecological Economics, Elsevier, vol. 139(C), pages 55-67.
    13. Mark Huberty & Georg Zachmann, 2011. "Green exports and the global product space- Prospects for EU industrial policy," Working Papers 556, Bruegel.
    14. Leo Baas, 2011. "Planning and Uncovering Industrial Symbiosis: Comparing the Rotterdam and Östergötland regions," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 428-440, November.
    15. Amtul Samie Maqbool & Francisco Mendez Alva & Greet Van Eetvelde, 2018. "An Assessment of European Information Technology Tools to Support Industrial Symbiosis," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    16. Frank Boons & Marian Chertow & Jooyoung Park & Wouter Spekkink & Han Shi, 2017. "Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 938-952, August.
    17. Maximilian Ueberschaar & Daniel Dariusch Jalalpoor & Nathalie Korf & Vera Susanne Rotter, 2017. "Potentials and Barriers for Tantalum Recovery from Waste Electric and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 700-714, June.
    18. Lin, Xiannuan & Polenske, Karen R., 1998. "Input--output modeling of production processes for business management," Structural Change and Economic Dynamics, Elsevier, vol. 9(2), pages 205-226, June.
    19. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    20. Charlie Karlsson & Börje Johansson & Roger R. Stough (ed.), 2005. "Industrial Clusters and Inter-Firm Networks," Books, Edward Elgar Publishing, number 3577.
    21. Teresa Doménech & Michael Davies, 2011. "The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 281-296, July.
    22. D'Amato, D. & Korhonen, J. & Toppinen, A., 2019. "Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts?," Ecological Economics, Elsevier, vol. 158(C), pages 116-133.
    23. Daniel C. Esty & Michael E. Porter, 1998. "Industrial Ecology and Competitiveness: Strategic Implications for the Firm," Journal of Industrial Ecology, Yale University, vol. 2(1), pages 35-43, January.
    24. Tuomas Mattila & Suvi Lehtoranta & Laura Sokka & Matti Melanen & Ari Nissinen, 2012. "Methodological Aspects of Applying Life Cycle Assessment to Industrial Symbioses," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 51-60, February.
    25. Christof Weinhardt & Arun Anandasivam & Benjamin Blau & Nikolay Borissov & Thomas Meinl & Wibke Michalk & Jochen Stößer, 2009. "Cloud Computing – A Classification, Business Models, and Research Directions," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(5), pages 391-399, October.
    26. Rammel, Christian & Stagl, Sigrid & Wilfing, Harald, 2007. "Managing complex adaptive systems -- A co-evolutionary perspective on natural resource management," Ecological Economics, Elsevier, vol. 63(1), pages 9-21, June.
    27. Bianchi, Carlo & Cirillo, Pasquale & Gallegati, Mauro & Vagliasindi, Pietro A., 2008. "Validation in agent-based models: An investigation on the CATS model," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 947-964, September.
    28. Guido Capelleveen & Chintan Amrit & Devrim Murat Yazan, 2018. "A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis," Progress in IS, in: Benoît Otjacques & Patrik Hitzelberger & Stefan Naumann & Volker Wohlgemuth (ed.), From Science to Society, pages 155-169, Springer.
    29. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    30. Weslynne S. Ashton & Shauhrat S. Chopra & And Rahul Kashyap, 2017. "Life and Death of Industrial Ecosystems," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    31. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    32. Evans David S. & Schmalensee Richard, 2010. "Failure to Launch: Critical Mass in Platform Businesses," Review of Network Economics, De Gruyter, vol. 9(4), pages 1-28, December.
    33. Robert Grubbstrom & Ou Tang, 2000. "An Overview of Input-Output Analysis Applied to Production-Inventory Systems," Economic Systems Research, Taylor & Francis Journals, vol. 12(1), pages 3-25.
    34. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    35. Diaz Lopez, Fernando J. & Bastein, Ton & Tukker, Arnold, 2019. "Business Model Innovation for Resource-efficiency, Circularity and Cleaner Production: What 143 Cases Tell Us," Ecological Economics, Elsevier, vol. 155(C), pages 20-35.
    36. Devrim Murat Yazan & Luca Fraccascia, 2020. "Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(2), pages 392-414, January.
    37. Artem Golev & Glen D. Corder & Damien P. Giurco, 2015. "Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 141-153, February.
    38. Anne Hewes & Donald Lyons, 2008. "The Humanistic Side of Eco-Industrial Parks: Champions and the Role of Trust," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1329-1342.
    39. Giannoccaro, Ilaria, 2015. "Adaptive supply chains in industrial districts: A complexity science approach focused on learning," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 576-589.
    40. Cao, Kai & Feng, Xiao & Wan, Hui, 2009. "Applying agent-based modeling to the evolution of eco-industrial systems," Ecological Economics, Elsevier, vol. 68(11), pages 2868-2876, September.
    41. David F. Batten, 2009. "Fostering Industrial Symbiosis With Agent‐Based Simulation and Participatory Modeling," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 197-213, April.
    42. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    43. Sang Lee & Taewan Kim & Yonghwi Noh & Byungku Lee, 2010. "Success factors of platform leadership in web 2.0 service business," Service Business, Springer;Pan-Pacific Business Association, vol. 4(2), pages 89-103, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Barile & Clara Bassano & Raffaele D’Amore & Paolo Piciocchi & Marialuisa Saviano & Pietro Vito, 2021. "Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach ( vSa )," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    2. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    3. Hou, Rui & Lei, Lei & Jin, Kangning & Lin, Xiaogang & Xiao, Lu, 2022. "Introducing electric vehicles? Impact of network effect on profits and social welfare," Energy, Elsevier, vol. 243(C).
    4. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    2. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    3. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    4. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    5. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    6. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    7. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    8. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    9. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    10. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    11. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    12. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    13. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    14. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    15. Luca Fraccascia & Alessandra Sabato & Devrim Murat Yazan, 2021. "An industrial symbiosis simulation game: Evidence from the circular sustainable business development class," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1688-1706, December.
    16. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    17. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    18. Sergio Barile & Clara Bassano & Raffaele D’Amore & Paolo Piciocchi & Marialuisa Saviano & Pietro Vito, 2021. "Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach ( vSa )," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    19. Fraccascia, Luca & Ceccarelli, Gaia & Dangelico, Rosa Maria, 2023. "Green products from industrial symbiosis: Are consumers ready for them?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    20. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:170:y:2020:i:c:s0921800919308559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.