IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5497-d273538.html
   My bibliography  Save this article

Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal

Author

Listed:
  • Angela Neves

    (Department of Mechanical Engineering, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal)

  • Radu Godina

    (UNIDEMI, Department of Mechanical and Industrial Engineering, Faculty of Science and Technology (FCT), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Susana G. Azevedo

    (University of Beira Interior, 6201-001 Covilhã, Portugal
    CEFAGE—Department of Business and Economics, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • João C. O. Matias

    (GOVCOPP and DEGEIT, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

Industrial symbiosis has proven to be an important tool for improving business sustainability with numerous environmental, economic, and social benefits. The literature on this subject has been provided with countless case studies of the application of this practice in different geographical locations. However, studies concerning Portugal in this area are still scarce. Thus, this article aims to map and analyze the existing cases of industrial symbiosis in Portugal, as well as the current state and the legislative context regarding this practice. It also aims to analyze the main barriers to the growth of synergy relations and outline new paths for the development of industrial symbiosis in Portugal. From the analysis to the case studies, it was possible to conclude that most industrial symbiosis networks have few actors, and networks with two and three are common. However, owing to strategic plans, the type of existing economic activities, and the waste generated, there is much potential for industrial symbiosis networks to be established and to contribute to emission reductions, more efficient use of resources, and reduced external dependence. However, in order to increase industrial symbiosis, concerted action must be taken at various levels to encourage companies to develop synergy relations. Changing the legislative framework, making funds available, the role of local governments, the existence of a facilitator, and the use of some industries as anchor tenants are some of the aspects that can contribute to the increase of industrial symbiosis in Portugal.

Suggested Citation

  • Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5497-:d:273538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González-Val, Rafael & Pueyo, Fernando, 2019. "Natural resources, economic growth and geography," Economic Modelling, Elsevier, vol. 83(C), pages 150-159.
    2. Papetti, Alessandra & Menghi, Roberto & Di Domizio, Giulia & Germani, Michele & Marconi, Marco, 2019. "Resources value mapping: A method to assess the resource efficiency of manufacturing systems," Applied Energy, Elsevier, vol. 249(C), pages 326-342.
    3. Hyeong†Woo Kim & Satoshi Ohnishi & Minoru Fujii & Tsuyoshi Fujita & Hung†Suck Park, 2018. "Evaluation and Allocation of Greenhouse Gas Reductions in Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 275-287, April.
    4. Laura Sokka & Suvi Lehtoranta & Ari Nissinen & Matti Melanen, 2011. "Analyzing the Environmental Benefits of Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 15(1), pages 137-155, February.
    5. Simboli, Alberto & Taddeo, Raffaella & Morgante, Anna, 2015. "The potential of Industrial Ecology in agri-food clusters (AFCs): A case study based on valorisation of auxiliary materials," Ecological Economics, Elsevier, vol. 111(C), pages 65-75.
    6. Raymond L. Paquin & Jennifer Howard‐Grenville, 2012. "The Evolution of Facilitated Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 83-93, February.
    7. John A. Mathews & Hao Tan, 2011. "Progress Toward a Circular Economy in China," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 435-457, June.
    8. Taddeo, Raffaella & Simboli, Alberto & Morgante, Anna & Erkman, Suren, 2017. "The Development of Industrial Symbiosis in Existing Contexts. Experiences From Three Italian Clusters," Ecological Economics, Elsevier, vol. 139(C), pages 55-67.
    9. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    10. Lin Shi & Marian Chertow, 2017. "Organizational Boundary Change in Industrial Symbiosis: Revisiting the Guitang Group in China," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    11. Marian Chertow & Weslynne Ashton & Juan Espinosa, 2008. "Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1299-1312.
    12. John R. Ehrenfeld, 2007. "Would Industrial Ecology Exist without Sustainability in the Background?," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 73-84, January.
    13. Fang, Kai & Dong, Liang & Ren, Jingzheng & Zhang, Qifeng & Han, Ling & Fu, Huizhen, 2017. "Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China," Ecological Modelling, Elsevier, vol. 365(C), pages 30-44.
    14. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    15. Frida Røyne & Roman Hackl & Emma Ringström & Johanna Berlin, 2018. "Environmental Evaluation of Industry Cluster Strategies with a Life Cycle Perspective: Replacing Fossil Feedstock with Forest‐Based Feedstock and Increasing Thermal Energy Integration," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 694-705, August.
    16. Manuel E. Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    17. Jooyoung Park & Juanita Duque-Hernández & Nohora Díaz-Posada, 2018. "Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    18. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    19. Li Sun & Wouter Spekkink & Eefje Cuppen & Gijsbert Korevaar, 2017. "Coordination of Industrial Symbiosis through Anchoring," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    20. Jonathan S. Krones, 2017. "Industrial Symbiosis in the Upper Valley: A Study of the Casella-Hypertherm Recycling Partnership," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    21. Jooyoung Park & Jun‐Mo Park & Hung‐Suck Park, 2019. "Scaling‐Up of Industrial Symbiosis in the Korean National Eco‐Industrial Park Program: Examining Its Evolution over the 10 Years between 2005–2014," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 197-207, February.
    22. Larissa A. R. U. Freitas & Alessandra Magrini, 2017. "Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    23. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    24. Manuel Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study," Post-Print hal-02127581, HAL.
    25. Manuel Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study [Dynamique de la symbiose industrielle, une stratégie pour réaliser une analyse complexe: l'étude de," Post-Print hal-02539477, HAL.
    26. Liudmila Kokoulina & Liubov Ermolaeva & Samuli Patala & Paavo Ritala, 2019. "Championing processes and the emergence of industrial symbiosis," Regional Studies, Taylor & Francis Journals, vol. 53(4), pages 528-539, April.
    27. Gabriel B. Grant & Thomas P. Seager & Guillaume Massard & Loring Nies, 2010. "Information and Communication Technology for Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 740-753, October.
    28. Vanessa Prieto‐Sandoval & Marta Ormazabal & Carmen Jaca & Elisabeth Viles, 2018. "Key elements in assessing circular economy implementation in small and medium‐sized enterprises," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1525-1534, December.
    29. Artem Golev & Glen D. Corder & Damien P. Giurco, 2015. "Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 141-153, February.
    30. Marian Chertow & Yuko Miyata, 2011. "Assessing collective firm behavior: comparing industrial symbiosis with possible alternatives for individual companies in Oahu, HI," Business Strategy and the Environment, Wiley Blackwell, vol. 20(4), pages 266-280, May.
    31. Xudong Chen & Tsuyoshi Fujita & Satoshi Ohnishi & Minoru Fujii & Yong Geng, 2012. "The Impact of Scale, Recycling Boundary, and Type of Waste on Symbiosis and Recycling," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 129-141, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Henriques & Paulo Ferrão & Muriel Iten, 2022. "Policies and Strategic Incentives for Circular Economy and Industrial Symbiosis in Portugal: A Future Perspective," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    2. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    3. João Azevedo & Inês Ferreira & Rui Dias & Cristina Ascenço & Bruno Magalhães & Juan Henriques & Muriel Iten & Fernando Cunha, 2021. "Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    4. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    5. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    2. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    3. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    4. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    5. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    6. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    7. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    8. Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
    9. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    10. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    11. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    12. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    13. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    14. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    15. Michael Martin, 2020. "Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 626-638, June.
    16. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
    17. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    18. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    19. Mohammadtaghi Falsafi & Rosanna Fornasiero, 2022. "Explorative Multiple-Case Research on the Scrap-Based Steel Slag Value Chain: Opportunities for Circular Economy," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    20. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5497-:d:273538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.