IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1420-d489509.html
   My bibliography  Save this article

Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies

Author

Listed:
  • João Azevedo

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Inês Ferreira

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Rui Dias

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Cristina Ascenço

    (Programs and Business Incubation, R&Di, Instituto de Soldadura e Qualidade, 2740-120 Oeiras, Portugal)

  • Bruno Magalhães

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 2740-120 Oeiras, Portugal)

  • Juan Henriques

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Muriel Iten

    (Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal)

  • Fernando Cunha

    (Escola Superior de Tecnologia de Setúbal—Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal)

Abstract

A successful and broad implementation of industrial symbiosis (IS) initiatives is highly related to stakeholder’s involvement and technical considerations on its process’ development. This paper presents a mixed research study (quantitative and qualitative) focusing on the development of a dedicated tool based on sequential modules’ that support companies in the assessment of their potential to develop and implement IS scenarios. The first module considers the identification and characterization of the economic activity of the company to support an IS contextualization analysis. The second module provides the evaluation of the company’s current state, allowing key intervention areas to be defined. The third module focuses on the assessment of the potential scenarios for synergies implementation based on an economic benefit comparison of different valorization scenarios regarding the available surplus or waste. Complementarily, a SWOT analysis for the identification of the internal strengths and weaknesses, the external opportunities and threats associated with the IS process implementation is presented. The final output compiles qualitative and quantitative results regarding each module. The presented tool is currently under validation at industrial case studies. The preliminary results show the high applicability of the proposed tool in order to support decision making processes on surpluses valorization scenarios selection.

Suggested Citation

  • João Azevedo & Inês Ferreira & Rui Dias & Cristina Ascenço & Bruno Magalhães & Juan Henriques & Muriel Iten & Fernando Cunha, 2021. "Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1420-:d:489509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Dias & João Azevedo & Inês Ferreira & Marco Estrela & Juan Henriques & Cristina Ascenço & Muriel Iten, 2020. "Technical Viability Analysis of Industrial Synergies—An Applied Framework Perspective," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    2. Zhiquan Yeo & Donato Masi & Jonathan Sze Choong Low & Yen Ting Ng & Puay Siew Tan & Stuart Barnes, 2019. "Tools for promoting industrial symbiosis: A systematic review," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1087-1108, October.
    3. Rachel Lombardi, 2017. "Non-technical barriers to (and drivers for) the circular economy through industrial symbiosis: A practical input," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 171-189.
    4. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    5. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
    6. Amtul Samie Maqbool & Francisco Mendez Alva & Greet Van Eetvelde, 2018. "An Assessment of European Information Technology Tools to Support Industrial Symbiosis," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    7. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    8. Tiberio Daddi & Benedetta Nucci & Fabio Iraldo & Francesco Testa, 2016. "Enhancing the Adoption of Life Cycle Assessment by Small and Medium Enterprises Grouped in an Industrial Cluster: A Case Study of the Tanning Cluster in Tuscany (Italy)," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1199-1211, October.
    9. Gabriel B. Grant & Thomas P. Seager & Guillaume Massard & Loring Nies, 2010. "Information and Communication Technology for Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 740-753, October.
    10. Artem Golev & Glen D. Corder & Damien P. Giurco, 2015. "Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 141-153, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Nor Azreen Ahmad Termizi & Sharifah Rafidah Wan Alwi & Zainuddin Abd Manan & Petar Sabev Varbanov, 2022. "Potential Application of Blockchain Technology in Eco-Industrial Park Development," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    2. Tatyana Tolstykh & Nadezhda Shmeleva & Leyla Gamidullaeva & Victoria Krasnobaeva, 2023. "The Role of Collaboration in the Development of Industrial Enterprises Integration," Sustainability, MDPI, vol. 15(9), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    2. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    3. Rui Dias & João Azevedo & Inês Ferreira & Marco Estrela & Juan Henriques & Cristina Ascenço & Muriel Iten, 2020. "Technical Viability Analysis of Industrial Synergies—An Applied Framework Perspective," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    4. Juan Henriques & Paulo Ferrão & Muriel Iten, 2022. "Policies and Strategic Incentives for Circular Economy and Industrial Symbiosis in Portugal: A Future Perspective," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    5. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    6. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    7. Lucyna Łȩkawska-Andrinopoulou & Georgios Tsimiklis & Sarah Leick & Manuel Moreno Nicolás & Angelos Amditis, 2021. "Circular Economy Matchmaking Framework for Future Marketplace Deployment," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    8. Amtul Samie Maqbool & Francisco Mendez Alva & Greet Van Eetvelde, 2018. "An Assessment of European Information Technology Tools to Support Industrial Symbiosis," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    9. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability,, Springer.
    10. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    11. Paulo Peças & Lenin John & Inês Ribeiro & António J. Baptista & Sara M. Pinto & Rui Dias & Juan Henriques & Marco Estrela & André Pilastri & Fernando Cunha, 2023. "Holistic Framework to Data-Driven Sustainability Assessment," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Xiaoxing Zhang & Changyuan Gao & Shuchen Zhang, 2021. "Research on the Knowledge-Sharing Incentive of the Cross-Boundary Alliance Symbiotic System," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    13. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    14. Daniela C. A. Pigosso & Andreas Schmiegelow & Maj Munch Andersen, 2018. "Measuring the Readiness of SMEs for Eco-Innovation and Industrial Symbiosis: Development of a Screening Tool," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    15. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    16. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    17. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    18. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    19. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    20. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1420-:d:489509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.