IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v68y2009i11p2868-2876.html
   My bibliography  Save this article

Applying agent-based modeling to the evolution of eco-industrial systems

Author

Listed:
  • Cao, Kai
  • Feng, Xiao
  • Wan, Hui

Abstract

Agent-based modeling is simply a modeling technique for describing complex adaptive systems in a form that can be solved by computers. In this paper, agent-based modeling is applied to eco-industrial systems to gain new insights into their behavior. The factory in the eco-industrial systems is taken as an agent, and the objects, attributes and behaviors are determined. Some important interaction mechanisms between agents are also designed. Besides, the sustainability evolution is also studied through emergy theory. More importantly, a new concept, the Internal-flow emergy, is used to indicate the evolution direction of an eco-industrial system. Finally, a hypothetical eco-industrial park utilizing natural gas and halite as the main raw material inputs is adopted as a case study to illustrate the effectiveness of the agent-based modeling.

Suggested Citation

  • Cao, Kai & Feng, Xiao & Wan, Hui, 2009. "Applying agent-based modeling to the evolution of eco-industrial systems," Ecological Economics, Elsevier, vol. 68(11), pages 2868-2876, September.
  • Handle: RePEc:eee:ecolec:v:68:y:2009:i:11:p:2868-2876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(09)00233-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Tieju & Nakamori, Yoshiteru, 2005. "Agent-based modeling on technological innovation as an evolutionary process," European Journal of Operational Research, Elsevier, vol. 166(3), pages 741-755, November.
    2. Rammel, Christian & Stagl, Sigrid & Wilfing, Harald, 2007. "Managing complex adaptive systems -- A co-evolutionary perspective on natural resource management," Ecological Economics, Elsevier, vol. 63(1), pages 9-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    2. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    3. Andreas Makoto Hein & Marija Jankovic & Romain Farel & Lei I Sam & Bernard Yannou, 2015. "Modeling Industrial Symbiosis Using Design Structure Matrices," Post-Print hal-01270870, HAL.
    4. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    5. Kasper P.H. Lange & Gijsbert Korevaar & Inge F. Oskam & Paulien M. Herder, 2017. "Developing and Understanding Design Interventions in Relation to Industrial Symbiosis Dynamics," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    6. L. Andrew Bollinger & Chris Davis & Igor Nikolić & Gerard P.J. Dijkema, 2012. "Modeling Metal Flow Systems," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 176-190, April.
    7. Yutong Tian & Shulian Xue & Chunhui Li & Hongli Liang & Jiansu Mao, 2019. "Sustainable Developmental Evaluation of Foreign Trade Based on Emergy Analysis Method in Shenzhen City, China," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    8. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    9. Knight, Christopher J.K. & Penn, Alexandra S. & Hoyle, Rebecca B., 2014. "Comparing the effects of mutualism and competition on industrial districts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 541-557.
    10. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    11. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    12. Sauvageau, Gabriel & Frayret, Jean-Marc, 2015. "Waste paper procurement optimization: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 242(3), pages 987-998.
    13. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
    14. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    2. Ponta, Linda & Puliga, Gloria & Lazzarotti, Valentina & Manzini, Raffaella & Cincotti, Silvano, 2023. "To copatent or not to copatent: An agent-based model for firms facing this dilemma," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1349-1363.
    3. Olivier Petit & Franck-Dominique Vivien, 2015. "When economists and ecologists meet on Ecological Economics: two science paths around two interdisciplinary concepts," Post-Print halshs-01249774, HAL.
    4. Angelo Antoci & Simone Borghesi & Gerardo Marletto, 2012. "To drive or not to drive? A simple evolutionary model," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2012(2), pages 31-47.
    5. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    6. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    7. Philip Haynes & David Alemna, 2022. "A Systematic Literature Review of the Impact of Complexity Theory on Applied Economics," Economies, MDPI, vol. 10(8), pages 1-23, August.
    8. Garmendia, Eneko & Stagl, Sigrid, 2010. "Public participation for sustainability and social learning: Concepts and lessons from three case studies in Europe," Ecological Economics, Elsevier, vol. 69(8), pages 1712-1722, June.
    9. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    10. Yoon, Jungsub & Lee, Jeong-Dong & Hwang, Seogwon, 2022. "Episodic change: A new approach to identifying industrial transition," Technovation, Elsevier, vol. 115(C).
    11. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    12. M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.
    13. Rakhyun Kim & Brendan Mackey, 2014. "International environmental law as a complex adaptive system," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 14(1), pages 5-24, March.
    14. Pan, Xiaojun & Li, Shoude, 2016. "Dynamic optimal control of process–product innovation with learning by doing," European Journal of Operational Research, Elsevier, vol. 248(1), pages 136-145.
    15. Ronald Edward Strangway & Marc Dunn & Ryan Erless, 2016. "Monitoring Nûtimesânân Following the Diversion of Our River: A Community-led Registry in Eeyou Istchee, Northern Québec," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-21, March.
    16. Stephan Leitner, 2014. "A simulation analysis of interactions among intended biases in costing systems and their effects on the accuracy of decision-influencing information," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 113-138, March.
    17. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    18. Clare, Stephen M. & Ruiz-Jaen, Maria C. & Hickey, Gordon M., 2019. "Assessing the potential of community-based forestry programs in Panama," Forest Policy and Economics, Elsevier, vol. 104(C), pages 81-92.
    19. Leitner, Stephan & Rausch, Alexandra & Behrens, Doris A., 2017. "Distributed investment decisions and forecasting errors: An analysis based on a multi-agent simulation model," European Journal of Operational Research, Elsevier, vol. 258(1), pages 279-294.
    20. Bentley, Chance & Anandhi, Aavudai, 2020. "Representing driver-response complexity in ecosystems using an improved conceptual model," Ecological Modelling, Elsevier, vol. 437(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:68:y:2009:i:11:p:2868-2876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.