IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p826-d98763.html
   My bibliography  Save this article

Developing and Understanding Design Interventions in Relation to Industrial Symbiosis Dynamics

Author

Listed:
  • Kasper P.H. Lange

    (Faculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands
    Faculty of Technology, Amsterdam University of Applied Sciences, P.O. Box 1025, 1000 BA Amsterdam, The Netherlands)

  • Gijsbert Korevaar

    (Faculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands)

  • Inge F. Oskam

    (Faculty of Technology, Amsterdam University of Applied Sciences, P.O. Box 1025, 1000 BA Amsterdam, The Netherlands)

  • Paulien M. Herder

    (Faculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands)

Abstract

Symbiotic Urban Agriculture Networks (SUANs) are a specific class of symbiotic networks that intend to close material and energy loops from cities and urban agriculture. Private and public stakeholders in SUANs face difficulties in the implementation of technological and organisational design interventions due to the complex nature of the agricultural and urban environment. Current research on the dynamics of symbiotic networks, especially Industrial Symbiosis (IS), is based on historical data from practice, and provides only partly for an understanding of symbiotic networks as a sociotechnical complex adaptive system. By adding theory and methodology from Design Science, participatory methods, and by using agent-based modelling as a tool, prescriptive knowledge is developed in the form of grounded and tested design rules for SUANs. In this paper, we propose a conceptual Design Science method with the aim to develop an empirically validated participatory agent-based modelling strategy that guides sociotechnical design interventions in SUANs. In addition, we present a research agenda for further strategy, design intervention, and model development through case studies regarding SUANs. The research agenda complements the existing analytical work by adding a necessary Design Science approach, which contributes to bridging the gap between IS dynamics theory and practical complex design issues.

Suggested Citation

  • Kasper P.H. Lange & Gijsbert Korevaar & Inge F. Oskam & Paulien M. Herder, 2017. "Developing and Understanding Design Interventions in Relation to Industrial Symbiosis Dynamics," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:826-:d:98763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joan E. van Aken, 2004. "Management Research Based on the Paradigm of the Design Sciences: The Quest for Field‐Tested and Grounded Technological Rules," Journal of Management Studies, Wiley Blackwell, vol. 41(2), pages 219-246, March.
    2. Aline Dresch & Daniel Pacheco Lacerda & José Antônio Valle Antunes Jr, 2015. "Design Science Research," Springer Books, Springer, edition 127, number 978-3-319-07374-3, September.
    3. Gerard P. J. Dijkema & Lauren Basson, 2009. "Complexity and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 157-164, April.
    4. Koppius, O.R. & Ozdemir, O. & van der Laan, E.A., 2011. "Beyond Waste Reduction: Creating Value with Information Systems in Closed-Loop Supply Chains," ERIM Report Series Research in Management ERS-2011-024-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Frank Boons & Wouter Spekkink & Wenting Jiao, 2014. "A Process Perspective on Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 341-355, May.
    6. Pierre Desrochers, 2001. "Cities and Industrial Symbiosis: Some Historical Perspectives and Policy Implications," Journal of Industrial Ecology, Yale University, vol. 5(4), pages 29-44, October.
    7. Cao, Kai & Feng, Xiao & Wan, Hui, 2009. "Applying agent-based modeling to the evolution of eco-industrial systems," Ecological Economics, Elsevier, vol. 68(11), pages 2868-2876, September.
    8. Aline Dresch & Daniel Pacheco Lacerda & José Antônio Valle Antunes, 2015. "Design Science Research," Springer Books, in: Design Science Research, edition 127, chapter 0, pages 67-102, Springer.
    9. David F. Batten, 2009. "Fostering Industrial Symbiosis With Agent‐Based Simulation and Participatory Modeling," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 197-213, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasper Lange & Gijsbert Korevaar & Igor Nikolic & Paulien Herder, 2021. "Actor Behaviour and Robustness of Industrial Symbiosis Networks: An Agent-Based Modelling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(3), pages 1-8.
    2. Tser-Yieth Chen & Chi-Jui Huang, 2019. "A Two-Tier Scenario Planning Model of Environmental Sustainability Policy in Taiwan," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    3. J. Raimbault & J. Broere & M. Somveille & J. M. Serna & E. Strombom & C. Moore & B. Zhu & L. Sugar, 2020. "A spatial agent based model for simulating and optimizing networked eco-industrial systems," Papers 2003.14133, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinicius Luiz Ferraz Minatogawa & Matheus Munhoz Vieira Franco & Izabela Simon Rampasso & Rosley Anholon & Ruy Quadros & Orlando Durán & Antonio Batocchio, 2019. "Operationalizing Business Model Innovation through Big Data Analytics for Sustainable Organizations," Sustainability, MDPI, vol. 12(1), pages 1-29, December.
    2. J. Raimbault & J. Broere & M. Somveille & J. M. Serna & E. Strombom & C. Moore & B. Zhu & L. Sugar, 2020. "A spatial agent based model for simulating and optimizing networked eco-industrial systems," Papers 2003.14133, arXiv.org.
    3. Vinicius Minatogawa & Matheus Franco & Orlando Durán & Ruy Quadros & Maria Holgado & Antonio Batocchio, 2020. "Carving out New Business Models in a Small Company through Contextual Ambidexterity: The Case of a Sustainable Company," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    4. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    5. Fabiane Tubino Garcia & Carla Schwengber ten Caten & Elaine Aparecida Regiani de Campos & Aline Marian Callegaro & Diego Augusto de Jesus Pacheco, 2022. "Mortality Risk Factors in Micro and Small Businesses: Systematic Literature Review and Research Agenda," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    6. Jeanine Többen & Raymond Opdenakker, 2022. "Developing a Framework to Integrate Circularity into Construction Projects," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    7. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    8. Majed Bin Othayman & Abdulrahim Meshari & John Mulyata & Yaw Debrah, 2021. "Challenges Experienced by Public Higher Education Institutions of Learning in the Implementation of Training and Development: A Case Study of Saudi Arabian Higher Education," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 10(2), pages 1-36, October.
    9. Rosiane Serrano & Luis Henrique Rodrigues & Daniel Pacheco Lacerda & Priscila Bonalume Paraboni, 2018. "Systems Thinking and Scenario Planning: Application in the Clothing Sector," Systemic Practice and Action Research, Springer, vol. 31(5), pages 509-537, October.
    10. Koldewey, Christian & Hemminger, Anja & Reinhold, Jannik & Gausemeier, Jürgen & Dumitrescu, Roman & Chohan, Nadia & Frank, Maximilian, 2022. "Aligning strategic position, behavior, and structure for smart service businesses in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Bernhard Koelmel & Max Borsch & Rebecca Bulander & Lukas Waidelich & Tanja Brugger & Ansgar Kuehn & Matthias Weyer & Luc Schmerber & Michael Krutwig, 2023. "Quantifying the Economic and Financial Viability of NB-IoT and LoRaWAN Technologies: A Comprehensive Life Cycle Cost Analysis Using Pragmatic Computational Tools," FinTech, MDPI, vol. 2(3), pages 1-17, July.
    12. Stadtherr, Frank & Wouters, Marc, 2021. "Extending target costing to include targets for R&D costs and production investments for a modular product portfolio—A case study," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    14. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    15. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    16. Leandro Gauss & Daniel P. Lacerda & Paulo A. Cauchick Miguel, 2021. "Module-based product family design: systematic literature review and meta-synthesis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 265-312, January.
    17. Lutui, Raymond, 2016. "A multidisciplinary digital forensic investigation process model," Business Horizons, Elsevier, vol. 59(6), pages 593-604.
    18. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    19. Mahyar Habibi Rad & Mohammad Mojtahedi & Michael J. Ostwald, 2021. "The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying Current and Future Research Directions," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    20. L. Andrew Bollinger & Chris Davis & Igor Nikolić & Gerard P.J. Dijkema, 2012. "Modeling Metal Flow Systems," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 176-190, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:826-:d:98763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.