IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v75y2025ipas1062940824001888.html
   My bibliography  Save this article

Dynamic connectedness of climate risks, oil shocks, and China’s energy futures market: Time-frequency evidence from Quantile-on-Quantile regression

Author

Listed:
  • Ren, Yinghua
  • Wang, Nairong
  • Zhu, Huiming

Abstract

This study investigates the dynamic risk nexus among climate risks, oil shocks and China’s energy futures market from a time–frequency-quantile perspective. We first explore the dynamic connectedness of “climate risks – oil shocks – energy futures” and examine the risk transmission channels through mediation effects model. The Quantile-on-Quantile regression is used to study the time–frequency impact of climate risks and oil shocks on energy futures across different market conditions and investment horizons. Our empirical results are as follows: First, climate transition risks, oil demand and risk shocks play mediating roles in risk transmission channels. Second, the impact of climate risks and oil shocks on energy futures is heterogeneous and asymmetric under extreme conditions. Notably, global warming, oil supply shock and international climate summits are the greatest shocks to China’s energy market. Finally, climate risks and oil shocks are more pronounced in the short term. Overall, these findings offer valuable insights for shaping risk management strategies and implementing effective hedging practices within the energy market.

Suggested Citation

  • Ren, Yinghua & Wang, Nairong & Zhu, Huiming, 2025. "Dynamic connectedness of climate risks, oil shocks, and China’s energy futures market: Time-frequency evidence from Quantile-on-Quantile regression," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
  • Handle: RePEc:eee:ecofin:v:75:y:2025:i:pa:s1062940824001888
    DOI: 10.1016/j.najef.2024.102263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940824001888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    3. Sohag, Kazi & Hassan, M. Kabir & Kalina, Irina & Mariev, Oleg, 2023. "The relative response of Russian National Wealth Fund to oil demand, supply and risk shocks," Energy Economics, Elsevier, vol. 123(C).
    4. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    5. Zhang-Hangjian Chen & Xiang Gao & Apicha Insuwan, 2023. "Dynamic information spillover between Chinese carbon and stock markets under extreme weather shocks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    6. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Yufeng Chen & Wenqi Li & Xi Jin, 2018. "Volatility Spillovers between Crude Oil Prices and New Energy Stock Price in China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 43-62, December.
    8. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    9. Yonghong Jiang & Jinqi Mu & He Nie & Lanxin Wu, 2022. "Time‐frequency analysis of risk spillovers from oil to BRICS stock markets: A long‐memory Copula‐CoVaR‐MODWT method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3386-3404, July.
    10. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    11. Khalfaoui, Rabeh & Mefteh-Wali, Salma & Viviani, Jean-Laurent & Ben Jabeur, Sami & Abedin, Mohammad Zoynul & Lucey, Brian M., 2022. "How do climate risk and clean energy spillovers, and uncertainty affect U.S. stock markets?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    12. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    13. Berna Aydogan, 2017. "Sentiment dynamics and volatility of international stock markets," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(3), pages 407-419, December.
    14. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    15. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    16. Gu, Qinen & Li, Shaofang & Tian, Sihua & Wang, Yuyouting, 2023. "Climate, geopolitical, and energy market risk interconnectedness: Evidence from a new climate risk index," Finance Research Letters, Elsevier, vol. 58(PB).
    17. Hoque, Mohammad Enamul & Soo-Wah, Low & Billah, Mabruk, 2023. "Time-frequency connectedness and spillover among carbon, climate, and energy futures: Determinants and portfolio risk management implications," Energy Economics, Elsevier, vol. 127(PB).
    18. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    19. Zhou, Deheng & Siddik, Abu Bakkar & Guo, Lili & Li, Houjian, 2023. "Dynamic relationship among climate policy uncertainty, oil price and renewable energy consumption—findings from TVP-SV-VAR approach," Renewable Energy, Elsevier, vol. 204(C), pages 722-732.
    20. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    21. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    22. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).
    23. Celiker, Umut & Kayacetin, Nuri Volkan & Kumar, Raman & Sonaer, Gokhan, 2016. "Cash flow news, discount rate news, and momentum," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 240-254.
    24. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    25. Robert C Ready, 2018. "Oil Prices and the Stock Market [The vix, the variance premium and stock market volatility]," Review of Finance, European Finance Association, vol. 22(1), pages 155-176.
    26. Balvers, Ronald & Du, Ding & Zhao, Xiaobing, 2017. "Temperature shocks and the cost of equity capital: Implications for climate change perceptions," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 18-34.
    27. Ahmad, Wasim, 2017. "On the dynamic dependence and investment performance of crude oil and clean energy stocks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 376-389.
    28. Carnevali, Emilio & Deleidi, Matteo & Pariboni, Riccardo & Veronese Passarella, Marco, 2021. "Cross-border financial flows and global warming in a two-area ecological SFC model," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    29. Jin, Yi & Zhao, Hang & Bu, Lin & Zhang, Dayong, 2023. "Geopolitical risk, climate risk and energy markets: A dynamic spillover analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    30. Nora Pankratz & Christoph M. Schiller, 2022. "Climate Change and Adaptation in Global Supply-Chain Networks," Finance and Economics Discussion Series 2022-056, Board of Governors of the Federal Reserve System (U.S.).
    31. Xiao, Jihong & Wang, Yudong, 2022. "Macroeconomic uncertainty, speculation, and energy futures returns: Evidence from a quantile regression," Energy, Elsevier, vol. 241(C).
    32. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    33. Zhaobo Zhu & Licheng Sun & Jun Tu & Qiang Ji, 2022. "Oil price shocks and stock market anomalies," Post-Print hal-03712237, HAL.
    34. Ren, Xiaohang & Li, Jingyao & He, Feng & Lucey, Brian, 2023. "Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    35. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    36. Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
    37. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    38. Li, Yiying & Yan, Cheng & Ren, Xiaohang, 2023. "Do uncertainties affect clean energy markets? Comparisons from a multi-frequency and multi-quantile framework," Energy Economics, Elsevier, vol. 121(C).
    39. Zhaobo Zhu & Licheng Sun & Jun Tu & Qiang Ji, 2022. "Oil price shocks and stock market anomalies," Financial Management, Financial Management Association International, vol. 51(2), pages 573-612, June.
    40. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    41. Walid Mensi & Waqas Hanif & Elie Bouri & Xuan Vinh Vo, 2023. "Spillovers and tail dependence between oil and US sectoral stock markets before and during COVID-19 pandemic," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 19(11), pages 4155-4185, February.
    42. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    43. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    44. Mr. Sunil Sharma & Sushil Bikhchandani, 2000. "Herd Behavior in Financial Markets: A Review," IMF Working Papers 2000/048, International Monetary Fund.
    45. Guo, Yaoqi & Shi, Fengyuan & Lin, Boqiang & Zhang, Hongwei, 2023. "The impact of oil shocks from different sources on China's clean energy metal stocks: An analysis of spillover effects based on a time-varying perspective," Resources Policy, Elsevier, vol. 81(C).
    46. Apostolos Serletis & Libo Xu, 2023. "Oil price uncertainty and climate risks," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(2), pages 323-332, June.
    47. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    48. Julia Kielmann & Hans Manner & Aleksey Min, 2022. "Stock market returns and oil price shocks: A CoVaR analysis based on dynamic vine copula models," Empirical Economics, Springer, vol. 62(4), pages 1543-1574, April.
    49. Bouri, Elie & Iqbal, Najaf & Klein, Tony, 2022. "Climate policy uncertainty and the price dynamics of green and brown energy stocks," Finance Research Letters, Elsevier, vol. 47(PB).
    50. Bernstein, Asaf & Gustafson, Matthew T. & Lewis, Ryan, 2019. "Disaster on the horizon: The price effect of sea level rise," Journal of Financial Economics, Elsevier, vol. 134(2), pages 253-272.
    51. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    52. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    53. Chatziantoniou, Ioannis & Filippidis, Michail & Filis, George & Gabauer, David, 2021. "A closer look into the global determinants of oil price volatility," Energy Economics, Elsevier, vol. 95(C).
    54. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    55. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    56. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    57. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    58. Aviral Kumar Tiwari & Emmanuel Joel Aikins Abakah & Richard Adjei Dwumfour & Salma Mefteh-Wali, 2022. "Connectedness and directional spillovers in energy sectors: international evidence," Applied Economics, Taylor & Francis Journals, vol. 54(22), pages 2554-2569, May.
    59. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    60. Ren, Yinghua & Tan, Anqi & Zhu, Huiming & Zhao, Wanru, 2022. "Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    61. Addoum, Jawad M. & Ng, David T. & Ortiz-Bobea, Ariel, 2023. "Temperature shocks and industry earnings news," Journal of Financial Economics, Elsevier, vol. 150(1), pages 1-45.
    62. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.
    63. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    64. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    65. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    66. Hong, Harrison & Li, Frank Weikai & Xu, Jiangmin, 2019. "Climate risks and market efficiency," Journal of Econometrics, Elsevier, vol. 208(1), pages 265-281.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    2. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    3. Hu, Lei & Song, Min & Wen, Fenghua & Zhang, Yun & Zhao, Yunning, 2025. "The impact of climate attention on risk spillover effect in energy futures markets," Energy Economics, Elsevier, vol. 141(C).
    4. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Hanif, Waqas & Hadhri, Sinda & El Khoury, Rim, 2024. "Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers," Journal of Commodity Markets, Elsevier, vol. 34(C).
    6. Emre Cevik & Emrah I Cevik & Sel Dibooglu & Raif Cergibozan & Mehmet Fatih Bugan & Mehmet Akif Destek, 2024. "Connectedness and risk spillovers between crude oil and clean energy stock markets," Energy & Environment, , vol. 35(7), pages 3319-3339, November.
    7. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    8. Yan, Wan-Lin & Cheung, Adrian (Wai Kong), 2024. "Connectedness among Chinese climate policy uncertainty, exchange rate, Chinese and international crude oil markets: Insights from time and frequency domain analyses of high order moments," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    9. Alomari, Mohammed & Khoury, Rim El & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2024. "Extreme downside risk connectedness between green energy and stock markets," Energy, Elsevier, vol. 312(C).
    10. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    11. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas & Roubaud, David, 2024. "Extreme co-movements between decomposed oil price shocks and sustainable investments," Energy Economics, Elsevier, vol. 134(C).
    12. Li, Hailing & Li, Yuxin & Zhang, Hua, 2023. "The spillover effects among the traditional energy markets, metal markets and sub-sector clean energy markets," Energy, Elsevier, vol. 275(C).
    13. Chen, Ying & Zhu, Xuehong & Chen, Jinyu, 2022. "Spillovers and hedging effectiveness of non-ferrous metals and sub-sectoral clean energy stocks in time and frequency domain," Energy Economics, Elsevier, vol. 111(C).
    14. Xiaoye Jin, 2024. "Salience theory value spillovers between China’s systemically important banks: evidence from quantile connectedness," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-39, December.
    15. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    16. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).
    17. Cui, Jinxin & Maghyereh, Aktham & Liao, Dijia, 2024. "Risk connectedness between international oil and stock markets during the COVID-19 pandemic and the Russia-Ukraine conflict: Fresh evidence from the higher-order moments," International Review of Economics & Finance, Elsevier, vol. 95(C).
    18. Qiao, Sen & Chang, Yuan & Mai, Xi Xi & Dang, Yi Jing, 2024. "Climate policy uncertainty, clean energy and energy metals: A quantile time-frequency spillover study," Energy Economics, Elsevier, vol. 139(C).
    19. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    20. Matteo Foglia & Eliana Angelini & Toan Luu Duc Huynh, 2024. "Tail risk connectedness in clean energy and oil financial market," Annals of Operations Research, Springer, vol. 334(1), pages 575-599, March.

    More about this item

    Keywords

    Energy futures; Climate risks; Oil shocks; Dynamic connectedness; Risk transmission channels; Time-frequency-quantile;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:75:y:2025:i:pa:s1062940824001888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.