IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v19y2015i02p245-269_00.html

Real-Time, Adaptive Learning Via Parameterized Expectations

Author

Listed:
  • Berardi, Michele
  • Duffy, John

Abstract

We explore real-time adaptive nonlinear learning dynamics in stochastic macroeconomic systems. Rather than linearizing nonlinear Euler equations where expectations play a role around a steady state, we instead approximate the nonlinear expected values using the method of parameterized expectations. Further, we assume that these approximated expectations are updated in real time as new data become available. We argue that this method of real-time parameterized expectations learning provides a plausible alternative to real-time adaptive learning dynamics under linearized versions of the same nonlinear system, and we provide a comparison of the two approaches.

Suggested Citation

  • Berardi, Michele & Duffy, John, 2015. "Real-Time, Adaptive Learning Via Parameterized Expectations," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 245-269, March.
  • Handle: RePEc:cup:macdyn:v:19:y:2015:i:02:p:245-269_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100513000370/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yutaka Kurihara, 2017. "Recent monetary policy effects on Japanese macroeconomy," Journal of Economic and Financial Studies (JEFS), LAR Center Press, vol. 5(5), pages 12-17, October.
    2. Yutaka Kurihara, 2016. "Can the Disparity between GDP and GDP Forecast Cause Economic Instability? The Recent Japanese Case," International Journal of Economics and Financial Research, Academic Research Publishing Group, vol. 2(8), pages 155-160, 08-2016.
    3. Berardi Michele, 2012. "Heterogeneous Learning Dynamics and Speed of Convergence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-20, October.
    4. Brecht Boone & Ewoud Quaghebeur, 2017. "Real-Time Parameterized Expectations And The Effects Of Government Spending," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 17/939, Ghent University, Faculty of Economics and Business Administration.
    5. Casares, Miguel & Vázquez, Jesús, 2016. "Data Revisions In The Estimation Of Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 20(7), pages 1683-1716, October.

    More about this item

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:19:y:2015:i:02:p:245-269_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.