IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Common Persistent Factors in Inflation and Excess Nominal Money Growth and a New Measure of Core Inflation

Listed author(s):
  • Morana Claudio

    (University of Piemonte Orientale (Novara))

In this paper we introduce a new common long memory factor model. The model allows to estimate the common persistent component in fractionally cointegrated processes. We find evidence of cobreaking and fractional cointegration in excess nominal money growth and inflation in the euro area, and propose a new core inflation measure which takes into account both features. A comparison with other core inflation measures reveals that the proposed core inflation process is superior in terms of forecasting properties and economic interpretability.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.degruyter.com/view/j/snde.2002.6.3/snde.2002.6.3.1092/snde.2002.6.3.1092.xml?format=INT
Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by De Gruyter in its journal Studies in Nonlinear Dynamics & Econometrics.

Volume (Year): 6 (2002)
Issue (Month): 3 (November)
Pages: 1-40

as
in new window

Handle: RePEc:bpj:sndecm:v:6:y:2002:i:3:n:3
Contact details of provider: Web page: https://www.degruyter.com

Order Information: Web: https://www.degruyter.com/view/j/snde

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  2. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
  3. D Marinucci & Peter M. Robinson, 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
  4. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  5. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
  6. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  7. Robinson, P. M., 1978. "Alternative models for stationary stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 141-152, December.
  8. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
  9. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
  10. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
  11. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  12. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  13. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
  14. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
  15. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
  16. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
  17. Hsu, Chih-Chiang, 2001. "Change point estimation in regressions with I(d) variables," Economics Letters, Elsevier, vol. 70(2), pages 147-155, February.
  18. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
  19. Ooms, M. & Doornik, J.A., 1999. "Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation," Econometric Institute Research Papers EI 9947/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:6:y:2002:i:3:n:3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.