IDEAS home Printed from https://ideas.repec.org/a/bla/kyklos/v69y2016i3p518-556.html
   My bibliography  Save this article

Prediction Markets, Social Media and Information Efficiency

Author

Listed:
  • Leighton Vaughan Williams
  • J. James Reade

Abstract

No abstract is available for this item.

Suggested Citation

  • Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
  • Handle: RePEc:bla:kyklos:v:69:y:2016:i:3:p:518-556
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/kykl.12119
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karen Croxson & J. James Reade, 2011. "Exchange vs Dealers: A High-Frequency Analysis of In-Play Betting Prices," Discussion Papers 11-19, Department of Economics, University of Birmingham.
    2. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    3. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2011. "Sentiment in Twitter events," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 406-418, February.
    4. Ricard Gil & Steven D. Levitt, 2007. "Testing the Efficiency of Markets in the 2002 World Cup," Journal of Prediction Markets, University of Buckingham Press, vol. 1(3), pages 255-270, December.
    5. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, Open Access Journal, vol. 3(2), pages 1-25, April.
    6. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    7. Dietmar Janetzko, 2014. "Predictive modeling in turbulent times – What Twitter reveals about the EUR/USD exchange rate," Netnomics, Springer, vol. 15(2), pages 69-106, September.
    8. Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(04), pages 409-451, October.
    9. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    10. Felix Pretis & James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    11. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    12. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    13. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    14. Julianne Treme & Zoe VanDerPloeg, 2014. "The Twitter Effect: Social Media Usage as a Contributor to Movie Success," Economics Bulletin, AccessEcon, vol. 34(2), pages 793-809.
    15. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christine Benesch & Simon Loretz & David Stadelmann & Tobias Thomas, 2018. "Media Coverage and Immigration Worries: Econometric Evidence," CREMA Working Paper Series 2018-03, Center for Research in Economics, Management and the Arts (CREMA).
    2. Christine Benesch & Simon Loretz & David Stadelmann & Tobias Thomas, 2018. "Media Coverage and Immigration Worries: Econometric Evidence," CREMA Working Paper Series 2018-03, Center for Research in Economics, Management and the Arts (CREMA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:kyklos:v:69:y:2016:i:3:p:518-556. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0023-5962 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.