IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v53y2022i1p37-51.html
   My bibliography  Save this article

Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis

Author

Listed:
  • Chau Trinh Nguyen
  • Frank Scrimgeour

Abstract

This article investigates the economic impacts of changes in climatic conditions on Vietnamese agriculture. We apply the two‐step Hsiao method to a 10‐year panel of household data which focuses on the production of 20 crops across seven regions in Vietnam. This study allows for variable market feedbacks across regions that grow different selections of crops. In this way, our article differs from most panel Ricardian analyses which assume uniform market shocks on households. Our analysis also includes climate interactions to allow the effects of temperatures to be dependent on the levels of rainfall. Panel evidence from the Ricardian model suggests heterogeneous climate impacts across seasons and regions. Rising seasonal temperatures are associated with losses to most regions, with spring temperatures being the exception. Increases in summer precipitation are valuable to mitigate the negative effects of rising temperatures. Changes in climate normal should not be the focus of policymakers since the simulation indicates marginal losses to agricultural productivity, both in the short term and the long term. Regions with cool climates are likely to be most affected by the projected climate change.

Suggested Citation

  • Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
  • Handle: RePEc:bla:agecon:v:53:y:2022:i:1:p:37-51
    DOI: 10.1111/agec.12677
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12677
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seo, Sung-No Niggol & Mendelsohn, Robert & Munasinghe, Mohan, 2005. "Climate change and agriculture in Sri Lanka: a Ricardian valuation," Environment and Development Economics, Cambridge University Press, vol. 10(5), pages 581-596, October.
    2. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    3. Quang Tran, Tuyen & Van Vu, Huong, 2019. "The impact of land fragmentation on household income: Evidence from rural Vietnam," MPRA Paper 98171, University Library of Munich, Germany, revised 2019.
    4. Mekbib G. Haile & Matthias Kalkuhl & Joachim von Braun, 2016. "Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 172-190.
    5. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 45(1), pages 57-79.
    6. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990, May.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    9. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    10. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    11. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    12. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    13. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    14. S. Seo & Robert Mendelsohn & Ariel Dinar & Rashid Hassan & Pradeep Kurukulasuriya, 2009. "A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 313-332, July.
    15. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    16. Awudu Abdulai, 2018. "Simon Brand Memorial Address," Agrekon, Taylor & Francis Journals, vol. 57(1), pages 28-39, January.
    17. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    19. John M. Antle & Claudio O. Stöckle, 2017. "Climate Impacts on Agriculture: Insights from Agronomic-Economic Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 299-318.
    20. Tran, Tuyen Quang & Vu, Huong Van, 2019. "Land fragmentation and household income: First evidence from rural Vietnam," Land Use Policy, Elsevier, vol. 89(C).
    21. Nguyen, Huy Quynh, 2017. "Analyzing the economies of crop diversification in rural Vietnam using an input distance function," Agricultural Systems, Elsevier, vol. 153(C), pages 148-156.
    22. Olivier Deschênes & Michael Greenstone, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply," American Economic Review, American Economic Association, vol. 102(7), pages 3761-3773, December.
    23. Maddison, David & Manley, Marita & Kurukulasuriya, Pradeep, 2007. "The impact of climate change on African agriculture : a ricardian approach," Policy Research Working Paper Series 4306, The World Bank.
    24. Trong Anh Trinh, 2018. "The Impact of Climate Change on Agriculture: Findings from Households in Vietnam," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 897-921, December.
    25. E. Eyshi Rezaei & T. Gaiser & S. Siebert & F. Ewert, 2015. "Adaptation of crop production to climate change by crop substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1155-1174, October.
    26. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    27. Elodie Blanc & John Reilly, 2017. "Approaches to Assessing Climate Change Impacts on Agriculture: An Overview of the Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 247-257.
    28. Feder, Gershon, 1985. "The relation between farm size and farm productivity : The role of family labor, supervision and credit constraints," Journal of Development Economics, Elsevier, vol. 18(2-3), pages 297-313, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trinh Nguyen Chau & Frank Scrimgeour, 2023. "Will climate change jeopardize the Vietnamese target of maintaining farmland for food security? A fractional multinomial logit analysis of land use choice," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 570-587, July.
    2. Trinh, Tra Thi & Munro, Alistair, 2023. "Integrating a choice experiment into an agent-based model to simulate climate-change induced migration: The case of the Mekong River Delta, Vietnam," Journal of choice modelling, Elsevier, vol. 48(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    2. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    3. Charlotte Fabri & Michele Moretti & Steven Van Passel, 2022. "On the (ir)relevance of heatwaves in climate change impacts on European agriculture," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    4. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    5. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    6. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    7. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    8. Jeonghyun Kim & Hojeong Park & Jong Ahn Chun & Sanai Li, 2018. "Adaptation Strategies under Climate Change for Sustainable Agricultural Productivity in Cambodia," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    9. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    10. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    11. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    12. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    13. Byela Tibesigwa & Martine Visser & Jane Turpie, 2017. "Climate change and South Africa’s commercial farms: an assessment of impacts on specialised horticulture, crop, livestock and mixed farming systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 607-636, April.
    14. Arellano Gonzalez, Jesus, 2018. "Estimating climate change damages in data scarce and non-competitive settings: a novel version of the Ricardian approach with an application to Mexico," 2018 Annual Meeting, August 5-7, Washington, D.C. 274010, Agricultural and Applied Economics Association.
    15. Schmidtner, Eva & Dabbert, Stephan & Lippert, Christian, 2015. "Do Different Measurements of Soil Quality Influence the Results of a Ricardian Analysis? – A Case Study on the Effects of Climate Change on German Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(02), June.
    16. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    17. Trong Anh Trinh, 2018. "The Impact of Climate Change on Agriculture: Findings from Households in Vietnam," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 897-921, December.
    18. Jawid, Asadullah, 2020. "A Ricardian analysis of the economic impact of climate change on agriculture: Evidence from the farms in the central highlands of Afghanistan," Journal of Asian Economics, Elsevier, vol. 67(C).
    19. DePaula, Guilherme, 2020. "The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    20. Zeilinger, Julian & Niedermayr, Andreas & Quddoos, Abdul & Kantelhardt, Jochen, 2021. "Identifying the Extent of Farm-Level Climate Change Adaptation," 2021 Conference, August 17-31, 2021, Virtual 315233, International Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:53:y:2022:i:1:p:37-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.