IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?

  • Anderson, Heather M.
  • Vahid, Farshid

This paper develops univariate and multivariate forecasting models for realized volatility in Australian stocks. We consider multivariate models with common features or common factors, and we suggest estimation procedures for approximate factor models that are robust to jumps when the cross-sectional dimension is not very large. Our forecast analysis shows that multivariate models outperform univariate models, but that there is little difference between simple and sophisticated factor models.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ingentaconnect.com/content/asa/jbes/2007/00000025/00000001/art00008
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 25 (2007)
Issue (Month): (January)
Pages: 76-90

as
in new window

Handle: RePEc:bes:jnlbes:v:25:y:2007:p:76-90
Contact details of provider: Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information: Web: http://www.amstat.org/publications/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robert F. Engle & Victor Ng & Michael Rothschild, 1988. "Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills," NBER Technical Working Papers 0065, National Bureau of Economic Research, Inc.
  2. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  3. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  4. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
  5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  6. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
  7. Vahid, F. & Issler, J.V., 2001. "The Importance Of Common Cyclical Features in VAR Analysis: A Monte-Carlo Study," Monash Econometrics and Business Statistics Working Papers 2/01, Monash University, Department of Econometrics and Business Statistics.
  8. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  9. Kapetanios, George & Marcellino, Massimiliano, 2006. "A Parametric Estimation Method for Dynamic Factor Models of Large Dimensions," CEPR Discussion Papers 5620, C.E.P.R. Discussion Papers.
  10. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  11. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-80, October.
  12. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  13. Catherine Doz & Éric Renault, 2004. "Conditionally Heteroskedastic Factor Models: Identification and Instrumental Variables Estimation," CIRANO Working Papers 2004s-37, CIRANO.
  14. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-95, October.
  15. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  16. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
  17. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  18. Havenner, Arthur & Aoki, Masanao, 1988. "An instrumental variables interpretation of linear systems theory estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 12(1), pages 49-54, March.
  19. Candelon, Bertrand & Hecq, Alain & Verschoor, Willem F.C., 2005. "Measuring common cyclical features during financial turmoil: Evidence of interdependence not contagion," Journal of International Money and Finance, Elsevier, vol. 24(8), pages 1317-1334, December.
  20. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  21. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-60, Oct.-Dec..
  22. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  23. Mervyn King & Enrique Sentana & Sushil Wadhwani, 1990. "Volatiltiy and Links Between National Stock Markets," NBER Working Papers 3357, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:25:y:2007:p:76-90. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.