IDEAS home Printed from https://ideas.repec.org/a/bas/econst/y2022i7p20-41.html
   My bibliography  Save this article

Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies

Author

Listed:
  • Mihail Yanchev

Abstract

Accurate forecasting of the timing and magnitude of macroeconomic recessions caused by unexpected shocks remains an area where both statistical models and judgmental forecasts tend to perform poorly. Inspired by the value-at-risk concept from financial risk management, a growing body of research has been focused on developing a framework to model and quantify macroeconomic risks and estimate the likelihood of adverse macroeconomic outcomes, which has become known as growth-at-risk assessment. The current study proposes an improvement to an established two-step procedure for empirical evaluation of the future growth distribution, which involves directly modelling the parameters of the conditional distribution in one step within an artificial neural network. The proposed procedure is tested on macroeconomic data from four small European open economies covering the coronavirus pandemic lockdown period and the recession related to it. The model achieves a better performance across the four countries compared to the established two-step procedure.

Suggested Citation

  • Mihail Yanchev, 2022. "Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 7, pages 20-41.
  • Handle: RePEc:bas:econst:y:2022:i:7:p:20-41
    as

    Download full text from publisher

    File URL: https://www.iki.bas.bg/Journals/EconomicStudies/2022/2022-7/02_Mihail-Yanchev.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    2. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    3. Makridakis, Spyros & Hogarth, Robin M. & Gaba, Anil, 2009. "Forecasting and uncertainty in the economic and business world," International Journal of Forecasting, Elsevier, vol. 25(4), pages 794-812, October.
    4. M. C. Jones & Arthur Pewsey, 2009. "Sinh-arcsinh distributions," Biometrika, Biometrika Trust, vol. 96(4), pages 761-780.
    5. Thomas R. Cook & Aaron Smalter Hall, 2017. "Macroeconomic Indicator Forecasting with Deep Neural Networks," Research Working Paper RWP 17-11, Federal Reserve Bank of Kansas City.
    6. Ms. Wenjie Chen & Mr. Mico Mrkaic & Mr. Malhar S Nabar, 2019. "The Global Economic Recovery 10 Years After the 2008 Financial Crisis," IMF Working Papers 2019/083, International Monetary Fund.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    9. Altunbas, Yener & Manganelli, Simone & Marques-Ibanez, David, 2017. "Realized bank risk during the great recession," Journal of Financial Intermediation, Elsevier, vol. 32(C), pages 29-44.
    10. Nigel Pain & Christine Lewis & Thai-Thanh Dang & Yosuke Jin & Pete Richardson, 2014. "OECD Forecasts During and After the Financial Crisis: A Post Mortem," OECD Economics Department Working Papers 1107, OECD Publishing.
    11. Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
    12. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    13. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    14. Zidong An & João Tovar Jalles & Prakash Loungani, 2018. "How well do economists forecast recessions?," International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
    15. Mr. Ananthakrishnan Prasad & Mr. Selim A Elekdag & Mr. Phakawa Jeasakul & Romain Lafarguette & Mr. Adrian Alter & Alan Xiaochen Feng & Changchun Wang, 2019. "Growth at Risk: Concept and Application in IMF Country Surveillance," IMF Working Papers 2019/036, International Monetary Fund.
    16. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    17. Figueres, Juan Manuel & Jarociński, Marek, 2020. "Vulnerable growth in the euro area: Measuring the financial conditions," Economics Letters, Elsevier, vol. 191(C).
    18. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    19. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    20. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    21. De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.
    22. Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
    23. Christine Lewis & Nigel Pain, 2014. "Lessons from OECD forecasts during and after the financial crisis," OECD Journal: Economic Studies, OECD Publishing, vol. 2014(1), pages 9-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    2. James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
    3. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    4. Szendrei, Tibor & Varga, Katalin, 2023. "Revisiting vulnerable growth in the Euro Area: Identifying the role of financial conditions in the distribution," Economics Letters, Elsevier, vol. 223(C).
    5. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    6. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    7. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    8. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
    9. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    10. Lang, Jan Hannes & Rusnák, Marek & Greiwe, Moritz, 2023. "Medium-term growth-at-risk in the euro area," Working Paper Series 2808, European Central Bank.
    11. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    12. De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.
    13. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021. "Expecting the unexpected: economic growth under stress," Working Papers 202106, University of California at Riverside, Department of Economics.
    14. Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023. "Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
    15. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2021. "Modelling Returns in US Housing Prices—You’re the One for Me, Fat Tails," JRFM, MDPI, vol. 14(11), pages 1-17, October.
    16. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    17. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    18. Suarez, Javier, 2022. "Growth-at-risk and macroprudential policy design," Journal of Financial Stability, Elsevier, vol. 60(C).
    19. De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Macroeconomic risks across the globe due to the Spanish Flu," Working Paper Series 2466, European Central Bank.
    20. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econst:y:2022:i:7:p:20-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.