IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/313313.html
   My bibliography  Save this article

Weather Impacts the Agricultural Production Efficiency of Wheat: The Emerging Role of Precipitation Shocks

Author

Listed:
  • Chen, Bowen
  • Dennis, Elliott J.
  • Featherstone, Allen

Abstract

No abstract is available for this item.

Suggested Citation

  • Chen, Bowen & Dennis, Elliott J. & Featherstone, Allen, 2022. "Weather Impacts the Agricultural Production Efficiency of Wheat: The Emerging Role of Precipitation Shocks," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
  • Handle: RePEc:ags:jlaare:313313
    DOI: 10.22004/ag.econ.313313
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/313313/files/JARE47_3_5_Chen.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.313313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    2. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    3. Aaron M. Shew & Jesse B. Tack & Lawton L. Nalley & Petronella Chaminuka, 2020. "Yield reduction under climate warming varies among wheat cultivars in South Africa," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021. "How weather affects the decomposition of total factor productivity in U.S. agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
    5. Stefania Lovo, 2011. "Pension Transfers and farm household technical efficiency: Evidence from South Africa," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1391-1405.
    6. Apurba Shee & Spiro E. Stefanou, 2015. "Endogeneity Corrected Stochastic Production Frontier and Technical Efficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 939-952.
    7. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    8. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    9. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    10. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    11. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    12. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    13. G. F. Donaldson, 1968. "Allowing for Weather Risk in Assessing Harvest Machinery Capacity," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 50(1), pages 24-40.
    14. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    15. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464, January.
    16. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    17. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    18. Jean L. Steiner & David D. Briske & David P. Brown & Caitlin M. Rottler, 2018. "Vulnerability of Southern Plains agriculture to climate change," Climatic Change, Springer, vol. 146(1), pages 201-218, January.
    19. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    20. Gammans, Matthew & Mérel, Pierre & Ortiz-Bobea, Ariel, 2016. "The impact of climate change on cereal yields: Statistical evidence from France," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236322, Agricultural and Applied Economics Association.
    21. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, June.
    22. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    23. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    24. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    25. Featherstone, Allen M. & Langemeier, Michael R. & Ismet, Mohammad, 1997. "A Nonparametric Analysis of Efficiency for a Sample of Kansas Beef Cow Farms," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(1), pages 175-184, July.
    26. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    3. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    4. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    5. Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
    6. Nicola Galluzzo, 2021. "Estimation of the impact of CAP subsidies as environmental variables on Romanian farms," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.
    7. Habtamu Alem, 2021. "The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    8. Wanglin Ma & Kathryn Bicknell & Alan Renwick, 2019. "Feed use intensification and technical efficiency of dairy farms in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(1), pages 20-38, January.
    9. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).
    10. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    11. Kok Fong See & Shawna Grosskopf & Vivian Valdmanis & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP072021, School of Economics, University of Queensland, Australia.
    12. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    13. Pal, Debdatta & Mitra, Subrata K. & Chatterjee, Somdeep, 2022. "Does “investment climate” affect GDP? Panel data evidence using reduced-form and stochastic frontier analysis," Journal of Business Research, Elsevier, vol. 138(C), pages 301-310.
    14. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    15. Djuraeva, Mukhayyo & Bobojonov, Ihtiyor & Kuhn, Lena & Glauben, Thomas, 2023. "The impact of agricultural extension type and form on technical efficiency under transition: An empirical assessment of wheat production in Uzbekistan," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 203-221.
    16. Tian, Xu & Sun, Feifei & Zhou, Yingheng, 2015. "Technical Efficiency and Its Determinants in China's Hog Production," 2015 Conference, August 9-14, 2015, Milan, Italy 212718, International Association of Agricultural Economists.
    17. Maria Martinez Cillero & Michael Wallace & Fiona Thorne & James Breen, 2021. "Analyzing the Impact of Subsidies on Beef Production Efficiency in Selected European Union Countries. A Stochastic Metafrontier Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1903-1923, October.
    18. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    19. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    20. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:313313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.