IDEAS home Printed from https://ideas.repec.org/a/fan/ecaqec/vhtml10.3280-ecag2021oa12772.html
   My bibliography  Save this article

Estimation of the impact of CAP subsidies as environmental variables on Romanian farms

Author

Listed:
  • Nicola Galluzzo

Abstract

Romanian agriculture is characterised by the presence of small farm enterprises, with an average value of land capital of less than 5 hectares in more than 95% of cases. The aim of this research was to assess the level of technical efficiency in farming through a non-parametric approach such as the Data Envelopment Analysis (DEA), and also to estimate the impact that financial subsidies allocated under the first and second pillars of the Common Agricultural Policy (CAP) have had on the technical efficiency. In the application of this analysis, these two inputs have been considered as environmental variables in order to evaluate their effect in fostering the technical efficiency using a two-stage dea method. The results have revealed the pivotal impact of financial subsidies disbursed through the first and second pillars of cap in enhancing technical efficiency in the Romanian farms included in the fadn dataset. In contrast, the subsidies disbursed under only the second pillar of the CAP in the framework of rural development have not been found to have had any discernible effect on the technical efficiency of Romanian farms. The novelty of this quantitative approach in the estimation of technical efficiency lies in its focus on the role of environmental variables as drivers in affecting the technical efficiency of farms, defining, in addition, how important they are in addressing efficiency and in shifting enhancing the function of technical efficiency on farms as well.Some conclusions were drawn: it is important to increase the endowment of subsidies for rural development and as well as decoupled payments in order to raise the level of technical efficiency in Romanian farms. At the same time, the findings suggest the need for Romanian farmers to reduce the level of certain inputs, such as labour, on the one hand, while on the other, increasing the dimension size of farms in terms of land capital and encouraging greater investment in labor-saving technology, even if significant imbalances remain between different Romanian regions, both in terms of the level of technical efficiency achieved and also in terms of output yield, and in the endowment of land capital and other assets.

Suggested Citation

  • Nicola Galluzzo, 2021. "Estimation of the impact of CAP subsidies as environmental variables on Romanian farms," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.
  • Handle: RePEc:fan:ecaqec:v:html10.3280/ecag2021oa12772
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=70132&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: https://www.francoangeli.it/DownloadCredit
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laure Latruffe & Yann Desjeux, 2016. "Common Agricultural Policy support, technical efficiencyand productivity change in French agriculture," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(1), pages 15-28.
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Bravo-Ureta, Boris E. & Pinheiro, António E., 1993. "Efficiency Analysis of Developing Country Agriculture: A Review of the Frontier Function Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 22(1), pages 88-101, April.
    4. Galluzzo, Nicola, 2019. "An analysis of technical efficiency in Icelandic dairy and sheep farms," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 121(3), December.
    5. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐stage models of production," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 170-191, June.
    6. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    7. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    8. Kassoum Ayouba & Jean-Philippe Boussemart & Stéphane Vigeant, 2017. "The impact of single farm payments on technicalinefficiency of French crop farms," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 98(1-2), pages 1-23.
    9. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2020. "The Effect of Investment, LFA and Agri‐environmental Subsidies on the Components of Total Factor Productivity: The Case of Slovenian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 853-876, September.
    10. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production," LIDAM Reprints ISBA 2018023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    12. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    13. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    14. Alan Swinbank, 2008. "Potential WTO Challenges to the CAP†," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(4), pages 445-456, December.
    15. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    16. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    17. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    18. Marian Rizov & Jan Pokrivcak & Pavel Ciaian, 2013. "CAP Subsidies and Productivity of the EU Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 537-557, September.
    19. Maria Garrone & Dorien Emmers & Hyejin Lee & Alessandro Olper & Johan Swinnen, 2019. "Subsidies and agricultural productivity in the EU," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 803-817, November.
    20. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    21. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2018. "Are farms in less favored areas less efficient?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(1), pages 3-12, January.
    22. Silvius STANCIU, 2017. "A Comparative Study Regarding The European Agricultural Allocation Of Funds For Rural Development During 2007-2013 And 2014-2020," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 13, pages 49-55, May.
    23. Crescenzi, Riccardo & Rodríguez-Pose, Andrés, 2011. "Reconciling top-down and bottom-up development policies," LSE Research Online Documents on Economics 30804, London School of Economics and Political Science, LSE Library.
    24. Jean Joseph Minviel & Laure Latruffe, 2017. "Effect of public subsidies on farm technical efficiency: a meta-analysis of empirical results," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 213-226, January.
    25. Galluzzo, Nicola, 2018. "A Quantitative Assessment Of The Rurality And An Efficiency Analysis Of Emigration In Romania," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 12(3-4), December.
    26. Pavel Ciaian & D'Artis Kancs & Johan Swinnen, 2014. "The Impact of the 2013 Reform of the Common Agricultural Policy on Land Capitalization in the European Union," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(4), pages 643-673.
    27. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2015. "Testing the "Separability" Condition in Two-Stage Nonparametric Models of Production," LIDAM Discussion Papers ISBA 2015018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    28. Gorton, Matthew & Davidova, Sophia, 2004. "Farm productivity and efficiency in the CEE applicant countries: a synthesis of results," Agricultural Economics, Blackwell, vol. 30(1), pages 1-16, January.
    29. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    30. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464, January.
    31. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    32. Martin Petrick & Patrick Zier, 2011. "Regional employment impacts of Common Agricultural Policy measures in Eastern Germany: a difference‐in‐differences approach," Agricultural Economics, International Association of Agricultural Economists, vol. 42(2), pages 183-193, March.
    33. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    34. Sofia KOURTESI & Panos FOUSEKIS & Apostolos POLYMEROS, 2012. "Conditional Efficiency Estimation With Environmental Variables: Evidence From Greek Cereal Farms," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 11(1), pages 43-52.
    35. Latruffe, Laure & Diazabakana, Ambre & Bockstaller, Christian & Desjeux, Yann & Finn, John & Kelly, Edel & Ryan, Mary & Uthes, Sandra, 2016. "Measurement of sustainability in agriculture: a review of indicators," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(3), pages 1-8, December.
    36. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    37. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    38. Ciaian, Pavel & Swinnen, Johan F.M., 2006. "AJAE Appendix: Land Market Imperfections and Agricultural Policy Impacts in the New EU Member States: A Partial Equilibrium Analysis," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 88(4), pages 1-10, November.
    39. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, September.
    40. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    41. von Witzke, Harald & Noleppa, Steffen, 2007. "Agricultural and Trade Policy Reform and Inequality: The Distributive Effects of Direct Payments to German Farmers under the EU's New Common Agricultural Policy," Working Paper Series 10289, Humboldt University Berlin, Department of Agricultural Economics.
    42. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    2. Nicola GALLUZZO, 2022. "Agritourism And Less Favored Areas Subsidies Impact On Technical Efficiency Of Italian Farms," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 19(1), pages 61-75.
    3. Frýd, Lukáš & Sokol, Ondřej, 2021. "Relationships between technical efficiency and subsidies for Czech farms: A two-stage robust approach," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    4. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    5. Mariarosaria Agostino & Ercan Enzo Comert & Federica Demaria & Sabrina Ruberto, 2024. "What kinds of subsidies affect technical efficiency? The case of Italian dairy farms," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 116-138, January.
    6. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    7. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    8. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    9. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    10. Guangshun Qiao & Zhan-ao Wang, 2021. "Vertical integration vs. specialization: a nonparametric conditional efficiency estimate for the global semiconductor industry," Journal of Productivity Analysis, Springer, vol. 56(2), pages 139-150, December.
    11. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    12. Khafagy, Amr & Vigani, Mauro, 2022. "Technical change and the Common Agricultural Policy," Food Policy, Elsevier, vol. 109(C).
    13. Andrea Bonfiglio & Roberto Henke & Fabio Pierangeli & Maria Rosaria Pupo D'Andrea, 2020. "Effects of redistributing policy support on farmers’ technical efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 305-320, March.
    14. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2019. "Quality and its impact on efficiency," LIDAM Discussion Papers ISBA 2019004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Yauheniya Varabyova & Jonas Schreyögg, 2018. "Integrating quality into the nonparametric analysis of efficiency: a simulation comparison of popular methods," Annals of Operations Research, Springer, vol. 261(1), pages 365-392, February.
    16. Caitlin T. O’Loughlin & Paul W. Wilson, 2021. "Benchmarking the performance of US Municipalities," Empirical Economics, Springer, vol. 60(6), pages 2665-2700, June.
    17. Maria Martinez Cillero & Fiona Thorne & Michael Wallace & James Breen & Thia Hennessy, 2018. "The Effects of Direct Payments on Technical Efficiency of Irish Beef Farms: A Stochastic Frontier Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 669-687, September.
    18. Narangerel Ganbold & Shah Fahad & Hua Li & Tumendemberel Gungaa, 2022. "An evaluation of subsidy policy impacts, transient and persistent technical efficiency: A case of Mongolia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9223-9242, July.
    19. Nicola GALLUZZO, 2023. "An Analysis Of Crop Costs In Italian Nitrate Vulnerable Areas And Agri-Environmental Subsidies," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 20(1), pages 15-28.
    20. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:ecaqec:v:html10.3280/ecag2021oa12772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=214 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.