IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v42y2011i2p183-193.html
   My bibliography  Save this article

Regional employment impacts of Common Agricultural Policy measures in Eastern Germany: a difference‐in‐differences approach

Author

Listed:
  • Martin Petrick
  • Patrick Zier

Abstract

Politicians and farm lobbyists frequently use the argument that agricultural policy is necessary to safeguard jobs in agriculture. We explore whether this is true by conducting an econometric ex-post evaluation of the European Union’s Common Agricultural Policy (CAP) in the three East German States Brandenburg, Saxony, and Saxony-Anhalt. Whereas previous studies have employed descriptive statistics or qualitative methods and have looked at single policy instruments in isolation, we apply a difference-in-differences estimator to analyse the employment effects of the entire portfolio of CAP measures simultaneously. Based on panel data at the county level, we find that investment aids and transfers to less favoured areas had a zero marginal employment effect. We present evidence that full decoupling of direct payments in 2005 led to labour shedding, as it made transfer payments independent of factor allocation. Spending on modern technologies in processing and marketing and measures aimed at the development of rural areas led to job losses in agriculture. Agri-environmental measures, on the other hand, kept labour intensive technologies in production or induced them. This analysis calls into question whether an expansion of existing second pillar measures is a reasonable way to use funds modulated away from the first pillar.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Martin Petrick & Patrick Zier, 2011. "Regional employment impacts of Common Agricultural Policy measures in Eastern Germany: a difference‐in‐differences approach," Agricultural Economics, International Association of Agricultural Economists, vol. 42(2), pages 183-193, March.
  • Handle: RePEc:bla:agecon:v:42:y:2011:i:2:p:183-193
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    2. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    3. David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2015. "Inference on Causal Effects in a Generalized Regression Kink Design," Econometrica, Econometric Society, vol. 83, pages 2453-2483, November.
    4. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
    5. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    6. Xavier d'Haultfoeuille & Stefan Hoderlein & Yuya Sasaki, 2013. "Nonlinear difference-in-differences in repeated cross sections with continuous treatments," CeMMAP working papers CWP40/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Breen, Richard & Ermisch, John, 2021. "Instrumental Variable Estimation in Demographic Studies: The LATE interpretation of the IV estimator with heterogenous effects," SocArXiv vx9m7, Center for Open Science.
    8. Amit Gandhi & Jeremy T. Fox, 2009. "Identifying Heterogeneity in Economic Choice and Selection Models Using Mixtures," 2009 Meeting Papers 165, Society for Economic Dynamics.
    9. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    10. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome conditioned treatment effects," CeMMAP working papers CWP39/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
    12. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    13. Stefan Hoderlein & Hajo Holzmann & Maximilian Kasy & Alexander Meister, 2015. "Erratum regarding “Instrumental variables with unrestricted heterogeneity and continuous treatment”," Boston College Working Papers in Economics 896, Boston College Department of Economics, revised 01 Feb 2016.
    14. Fernández-Val, Iván & van Vuuren, Aico & Vella, Francis, 2018. "Nonseparable Sample Selection Models with Censored Selection Rules: An Application to Wage Decompositions," IZA Discussion Papers 11294, Institute of Labor Economics (IZA).
    15. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    16. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    17. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    18. Michihito Ando, 2017. "How much should we trust regression-kink-design estimates?," Empirical Economics, Springer, vol. 53(3), pages 1287-1322, November.
    19. Fernández-Val, Iván & van Vuuren, Aico & Vella, Francis, 2018. "Decomposing Real Wage Changes in the United States," IZA Discussion Papers 12044, Institute of Labor Economics (IZA).
    20. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2024. "Testing and relaxing the exclusion restriction in the control function approach," Journal of Econometrics, Elsevier, vol. 240(2).

    More about this item

    JEL classification:

    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • J43 - Labor and Demographic Economics - - Particular Labor Markets - - - Agricultural Labor Markets
    • R58 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Regional Development Planning and Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:42:y:2011:i:2:p:183-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.