IDEAS home Printed from https://ideas.repec.org/r/taf/jnlbes/v37y2019i2p363-375.html
   My bibliography  Save this item

Large Dynamic Covariance Matrices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
  2. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
  3. Kawakatsu Hiroyuki, 2021. "Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 33-52, January.
  4. Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
  5. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
  6. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
  7. Andries C. van Vlodrop & Andre (A.) Lucas, 2018. "Estimation Risk and Shrinkage in Vast-Dimensional Fundamental Factor Models," Tinbergen Institute Discussion Papers 18-099/III, Tinbergen Institute.
  8. He, Zhongfang, 2018. "A Class of Generalized Dynamic Correlation Models," MPRA Paper 84820, University Library of Munich, Germany.
  9. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
  10. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
  11. Llorens-Terrazas, Jordi & Brownlees, Christian, 2023. "Projected Dynamic Conditional Correlations," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1761-1776.
  12. Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
  13. Jean-David Fermanian & Benjamin Poignard & Panos Xidonas, 2025. "Model-based vs. agnostic methods for the prediction of time-varying covariance matrices," Annals of Operations Research, Springer, vol. 346(1), pages 511-548, March.
  14. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
  15. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
  16. Francq, Christian & Zakoïan, Jean-Michel, 2020. "Virtual Historical Simulation for estimating the conditional VaR of large portfolios," Journal of Econometrics, Elsevier, vol. 217(2), pages 356-380.
  17. Jianqing Fan & Donggyu Kim & Minseok Shin & Yazhen Wang, 2024. "Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data," Working Papers 202415, University of California at Riverside, Department of Economics.
  18. Chazi, Abdelaziz & Samet, Anis & Azad, A.S.M. Sohel, 2023. "Volatility and correlation of Islamic and conventional indices during crises," Global Finance Journal, Elsevier, vol. 55(C).
  19. Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model," Papers 2002.06243, arXiv.org.
  20. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
  21. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised Feb 2025.
  22. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
  23. Ge, S. & Li, S. & Linton, O. B. & Liu, W. & Su, W., 2024. "Should We Augment Large Covariance Matrix Estimation with Auxiliary Network Information?," Janeway Institute Working Papers 2416, Faculty of Economics, University of Cambridge.
  24. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
  25. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
  26. Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
  27. Christian Bongiorno & Damien Challet, 2024. "Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS," Quantitative Finance, Taylor & Francis Journals, vol. 24(9), pages 1227-1234, September.
  28. Catherine D'Hondt & Rudy De Winne & Eric Ghysels & Steve Raymond, 2019. "Artificial Intelligence Alter Egos: Who benefits from Robo-investing?," Papers 1907.03370, arXiv.org.
  29. Hediger, Simon & Näf, Jeffrey, 2024. "Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns," Journal of Empirical Finance, Elsevier, vol. 77(C).
  30. Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student’s t -Process Latent Variable Model," Mathematics, MDPI, vol. 8(3), pages 1-10, March.
  31. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
  32. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
  33. Jian Zhang & Jie Li, 2022. "Factorized estimation of high‐dimensional nonparametric covariance models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 542-567, June.
  34. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
  35. JD Opdyke, 2025. "Beating the Correlation Breakdown: Robust Inference, Flexible Scenarios, and Stress Testing for Financial Portfolios," Papers 2504.15268, arXiv.org, revised May 2025.
  36. Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
  37. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Sparsity and Stability for Minimum-Variance Portfolios," Papers 1910.11840, arXiv.org.
  38. Christian Bongiorno & Damien Challet, 2022. "Reactive global minimum variance portfolios with k-BAHC covariance cleaning," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.
  39. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
  40. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  41. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
  42. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
  43. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
  44. Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
  45. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
  46. Khashanah, Khaldoun & Simaan, Majeed & Simaan, Yusif, 2022. "Do we need higher-order comoments to enhance mean-variance portfolios? Evidence from a simplified jump process," International Review of Financial Analysis, Elsevier, vol. 81(C).
  47. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
  48. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
  49. Damir Filipovic & Paul Schneider, 2024. "Fundamental properties of linear factor models," Papers 2409.02521, arXiv.org, revised Feb 2025.
  50. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
  51. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
  52. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
  53. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.
  54. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
  55. Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2024. "Factor-Mimicking Portfolios for Climate Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 80(3), pages 37-58, July.
  56. Anja Vinzelberg & Benjamin R. Auer, 2022. "Unprofitability of food market investments," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2887-2910, October.
  57. Qiao, W. & Bu, D. & Gibberd, A. & Liao, Y. & Wen, T. & Li, E., 2023. "When “time varying” volatility meets “transaction cost” in portfolio selection," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 220-237.
  58. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
  59. Pietro Coretto & Michele La Rocca & Giuseppe Storti, 2020. "Improving Many Volatility Forecasts Using Cross-Sectional Volatility Clusters," JRFM, MDPI, vol. 13(4), pages 1-23, March.
  60. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
  61. Dong, Yingjie & Tse, Yiu-Kuen, 2020. "Forecasting large covariance matrix with high-frequency data using factor approach for the correlation matrix," Economics Letters, Elsevier, vol. 195(C).
  62. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.
  63. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
  64. Luger, Richard, 2025. "Regularizing stock return covariance matrices via multiple testing of correlations," Journal of Econometrics, Elsevier, vol. 248(C).
  65. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
  66. Chuting Sun & Qi Wu & Xing Yan, 2023. "Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning," Papers 2301.07318, arXiv.org, revised Jan 2024.
  67. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
  68. Cheng Yu & Zhoufan Zhu & Ke Zhu, 2025. "Tensor dynamic conditional correlation model: A new way to pursuit "Holy Grail of investing"," Papers 2502.13461, arXiv.org.
  69. Laura Liu & Christian Matthes & Katerina Petrova, 2022. "Monetary Policy Across Space and Time," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 37-64, Emerald Group Publishing Limited.
  70. Wang, Hanchao & Peng, Bin & Li, Degui & Leng, Chenlei, 2021. "Nonparametric estimation of large covariance matrices with conditional sparsity," Journal of Econometrics, Elsevier, vol. 223(1), pages 53-72.
  71. Sylvia Gottschalk, 2023. "From Black Wednesday to Brexit: Macroeconomic shocks and correlations of equity returns in France, Germany, Italy, Spain, and the United Kingdom," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2843-2873, July.
  72. Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).
  73. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
  74. Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
  75. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
  76. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
  77. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
  78. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
  79. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
  80. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
  81. Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023. "Binary response models for heterogeneous panel data with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
  82. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
  83. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
  84. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
  85. Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
  86. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  87. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
  88. Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.
  89. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
  90. Bian, Zhicun & Liao, Yin & O’Neill, Michael & Shi, Jing & Zhang, Xueyong, 2020. "Large-scale minimum variance portfolio allocation using double regularization," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
  91. Christian Bongiorno & Damien Challet, 2023. "The Oracle estimator is suboptimal for global minimum variance portfolio optimisation," Post-Print hal-03491913, HAL.
  92. Zhu, Zhoufan & Zhang, Ningning & Zhu, Ke, 2024. "Big portfolio selection by graph-based conditional moments method," Journal of Empirical Finance, Elsevier, vol. 78(C).
  93. Moura, Guilherme V. & Santos, André A. P. & Ruiz Ortega, Esther, 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
  94. Kei Nakagawa & Mitsuyoshi Imamura & Kenichi Yoshida, 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices," IJFS, MDPI, vol. 6(2), pages 1-14, May.
  95. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
  96. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
  97. Yfanti, Stavroula & Karanasos, Menelaos & Zopounidis, Constantin & Christopoulos, Apostolos, 2023. "Corporate credit risk counter-cyclical interdependence: A systematic analysis of cross-border and cross-sector correlation dynamics," European Journal of Operational Research, Elsevier, vol. 304(2), pages 813-831.
  98. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
  99. Karim M Abadir, 2023. "Explicit minimal representation of variance matrices, and its implication for dynamic volatility models," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 88-104.
  100. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
  101. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
  102. D’Hondt, Catherine & De Winne, Rudy & Ghysels, Eric & Raymond, Steve, 2020. "Artificial Intelligence Alter Egos: Who might benefit from robo-investing?," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 278-299.
  103. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
  104. Sama Haddad, 2023. "Global Financial Market Integration: A Literature Survey," JRFM, MDPI, vol. 16(12), pages 1-27, November.
  105. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
  106. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
  107. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
  108. van Zundert, Jeroen, 2018. "Empirical studies on the cross-section of corporate bond and stock markets," Other publications TiSEM 338205fc-a031-4e06-a636-9, Tilburg University, School of Economics and Management.
  109. Masaya Abe & Kei Nakagawa, 2020. "Cross-sectional Stock Price Prediction using Deep Learning for Actual Investment Management," Papers 2002.06975, arXiv.org.
  110. Cai, Zhanrui & Li, Changcheng & Wen, Jiawei & Yang, Songshan, 2024. "Asset splitting algorithm for ultrahigh dimensional portfolio selection and its theoretical property," Journal of Econometrics, Elsevier, vol. 239(2).
  111. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
  112. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
  113. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.