IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.06243.html
   My bibliography  Save this paper

TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model

Author

Listed:
  • Yusuke Uchiyama
  • Kei Nakagawa

Abstract

Optimal asset allocation is a key topic in modern finance theory. To realize the optimal asset allocation on investor's risk aversion, various portfolio construction methods have been proposed. Recently, the applications of machine learning are rapidly growing in the area of finance. In this article, we propose the Student's $t$-process latent variable model (TPLVM) to describe non-Gaussian fluctuations of financial timeseries by lower dimensional latent variables. Subsequently, we apply the TPLVM to minimum-variance portfolio as an alternative of existing nonlinear factor models. To test the performance of the proposed portfolio, we construct minimum-variance portfolios of global stock market indices based on the TPLVM or Gaussian process latent variable model. By comparing these portfolios, we confirm the proposed portfolio outperforms that of the existing Gaussian process latent variable model.

Suggested Citation

  • Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model," Papers 2002.06243, arXiv.org.
  • Handle: RePEc:arx:papers:2002.06243
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.06243
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Kei Nakagawa & Takumi Uchida & Tomohisa Aoshima, 2018. "Deep Factor Model," Papers 1810.01278, arXiv.org.
    5. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    6. Rajbir-Singh Nirwan & Nils Bertschinger, 2018. "Applications of Gaussian Process Latent Variable Models in Finance," Papers 1806.03294, arXiv.org, revised Apr 2019.
    7. Kei Nakagawa & Tomoki Ito & Masaya Abe & Kiyoshi Izumi, 2019. "Deep Recurrent Factor Model: Interpretable Non-Linear and Time-Varying Multi-Factor Model," Papers 1901.11493, arXiv.org.
    8. Kei Nakagawa & Mitsuyoshi Imamura & Kenichi Yoshida, 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices," IJFS, MDPI, vol. 6(2), pages 1-14, May.
    9. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Toman & Nalini Ravishanker & Nathan Lally & Sanguthevar Rajasekaran, 2023. "Latent Autoregressive Student- t Prior Process Models to Assess Impact of Interventions in Time Series," Future Internet, MDPI, vol. 16(1), pages 1-17, December.
    2. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    3. Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    4. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    5. Yusuke Uchiyama & Kei Nakagawa, 2022. "Schr\"{o}dinger Risk Diversification Portfolio," Papers 2202.09939, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuke Uchiyama & Kei Nakagawa, 2020. "TPLVM: Portfolio Construction by Student’s t -Process Latent Variable Model," Mathematics, MDPI, vol. 8(3), pages 1-10, March.
    2. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    3. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org.
    4. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    5. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    6. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    7. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    8. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    9. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    10. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    11. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    12. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    13. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    14. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    15. Chazi, Abdelaziz & Samet, Anis & Azad, A.S.M. Sohel, 2023. "Volatility and correlation of Islamic and conventional indices during crises," Global Finance Journal, Elsevier, vol. 55(C).
    16. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    17. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    18. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    19. He, Zhongfang, 2018. "A Class of Generalized Dynamic Correlation Models," MPRA Paper 84820, University Library of Munich, Germany.
    20. Fotopoulos, Stergios B. & Jandhyala, Venkata K. & Chen, Kim-Heng, 2007. "Non-linear properties of conditional returns under scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3041-3056, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.06243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.