IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01918.html
   My bibliography  Save this paper

End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning

Author

Listed:
  • Christian Bongiorno
  • Efstratios Manolakis
  • Rosario Nunzio Mantegna

Abstract

We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.

Suggested Citation

  • Christian Bongiorno & Efstratios Manolakis & Rosario Nunzio Mantegna, 2025. "End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning," Papers 2507.01918, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.01918
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01918
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    2. Christian Bongiorno & Damien Challet, 2021. "Covariance matrix filtering with bootstrapped hierarchies," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-13, January.
    3. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    4. Giorgio Costa & Garud N. Iyengar, 2023. "Distributionally robust end-to-end portfolio construction," Quantitative Finance, Taylor & Francis Journals, vol. 23(10), pages 1465-1482, October.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Yu, Pengrui & Liu, Siya & Jin, Chengneng & Gu, Runsheng & Gong, Xiaomin, 2025. "Optimization-based spectral end-to-end deep reinforcement learning for equity portfolio management," Pacific-Basin Finance Journal, Elsevier, vol. 91(C).
    8. Tomas Espana & Victor Le Coz & Matteo Smerlak, 2024. "Kendall Correlation Coefficients for Portfolio Optimization," Papers 2410.17366, arXiv.org.
    9. Kawakatsu Hiroyuki, 2021. "Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 33-52, January.
    10. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    11. Christian Bongiorno & Damien Challet, 2024. "Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS," Quantitative Finance, Taylor & Francis Journals, vol. 24(9), pages 1227-1234, September.
    12. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    13. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    14. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    15. Shiguo Huang & Linyu Cao & Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2024. "Enhancing Portfolio Optimization: A Two-Stage Approach with Deep Learning and Portfolio Optimization," Mathematics, MDPI, vol. 12(21), pages 1-21, October.
    16. Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.
    17. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    18. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    19. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    20. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    21. Christian Bongiorno & Damien Challet, 2022. "Reactive global minimum variance portfolios with k-BAHC covariance cleaning," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.
    22. Andrew Butler & Roy H. Kwon, 2023. "Integrating prediction in mean-variance portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 23(3), pages 429-452, March.
    23. Sun, Zhangshuang & Gao, Xuerui & Luo, Kangyang & Bai, Yanqin & Tao, Jiyuan & Wang, Guoqiang, 2025. "Enhancing high-dimensional dynamic conditional angular correlation model based on GARCH family models: Comparative performance analysis for portfolio optimization," Finance Research Letters, Elsevier, vol. 75(C).
    24. A. Sinem Uysal & Xiaoyue Li & John M. Mulvey, 2024. "End-to-end risk budgeting portfolio optimization with neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 397-426, August.
    25. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
    26. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    27. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    28. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    29. Markowitz, Harry M & Usmen, Nilufer, 1996. "The Likelihood of Various Stock Market Return Distributions, Part 1: Principles of Inference," Journal of Risk and Uncertainty, Springer, vol. 13(3), pages 207-219, November.
    30. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    31. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    32. Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
    33. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
    34. Christian Bongiorno & Damien Challet & Grégoire Loeper, 2023. "Filtering time-dependent covariance matrices using time-independent eigenvalues," Post-Print hal-03481441, HAL.
    35. Markowitz, Harry M & Usmen, Nilufer, 1996. "The Likelihood of Various Stock Market Return Distributions, Part 2: Empirical Results," Journal of Risk and Uncertainty, Springer, vol. 13(3), pages 221-247, November.
    36. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    37. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    38. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conlon, Thomas & Cotter, John & Kynigakis, Iason, 2025. "Asset allocation with factor-based covariance matrices," European Journal of Operational Research, Elsevier, vol. 325(1), pages 189-203.
    2. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
    3. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
    4. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    5. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    6. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    7. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    8. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    9. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    10. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    11. Alex Shkolnik & Alec Kercheval & Hubeyb Gurdogan & Lisa R. Goldberg & Haim Bar, 2025. "Portfolio selection revisited," Annals of Operations Research, Springer, vol. 346(1), pages 137-155, March.
    12. Juchan Kim & Inwoo Tae & Yongjae Lee, 2025. "Estimating Covariance for Global Minimum Variance Portfolio: A Decision-Focused Learning Approach," Papers 2508.10776, arXiv.org.
    13. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    14. Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2024. "Dynamic robust portfolio selection under market distress," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    15. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    16. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    17. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    18. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    19. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    20. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.