IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01918.html
   My bibliography  Save this paper

End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning

Author

Listed:
  • Christian Bongiorno
  • Efstratios Manolakis
  • Rosario Nunzio Mantegna

Abstract

We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.

Suggested Citation

  • Christian Bongiorno & Efstratios Manolakis & Rosario Nunzio Mantegna, 2025. "End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning," Papers 2507.01918, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.01918
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01918
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.