IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v75y2010i1p40-58.html
   My bibliography  Save this article

Correlation, hierarchies, and networks in financial markets

Author

Listed:
  • Tumminello, Michele
  • Lillo, Fabrizio
  • Mantegna, Rosario N.

Abstract

We discuss some methods to quantitatively investigate the properties of correlation matrices. Correlation matrices play an important role in portfolio optimization and in several other quantitative descriptions of asset price dynamics in financial markets. Here, we discuss how to define and obtain hierarchical trees, correlation based trees and networks from a correlation matrix. The hierarchical clustering and other procedures performed on the correlation matrix to detect statistically reliable aspects of it are seen as filtering procedures of the correlation matrix. We also discuss a method to associate a hierarchically nested factor model to a hierarchical tree obtained from a correlation matrix. The information retained in filtering procedures and its stability with respect to statistical fluctuations is quantified by using the Kullback-Leibler distance.

Suggested Citation

  • Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
  • Handle: RePEc:eee:jeborg:v:75:y:2010:i:1:p:40-58
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-2681(10)00007-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    3. S. Illeris & G. Akehurst, 2001. "Introduction," The Service Industries Journal, Taylor & Francis Journals, vol. 21(1), pages 1-4, January.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & N. Mantegna, Rosario, 2003. "Degree stability of a minimum spanning tree of price return and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 66-73.
    6. M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
    7. Giovanni Bonanno & Nicolas Vandewalle & Rosario N. Mantegna, 2000. "Taxonomy of Stock Market Indices," Papers cond-mat/0001268, arXiv.org, revised Aug 2000.
    8. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    9. Giulio Biroli & Jean-Philippe Bouchaud & Marc Potters, 2007. "The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy," Papers 0710.0802, arXiv.org.
    10. M. Tumminello & F. Lillo & R. N. Mantegna, 2007. "Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance," Papers 0710.0576, arXiv.org.
    11. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    12. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    13. Michele Tumminello & Fabrizio Lillo & Rosario Nunzio Mantegna, 2007. "Kullback-Leibler distance as a measure of the information filtered from multivariate data," Papers 0706.0168, arXiv.org.
    14. C. Coronnello & M. Tumminello & F. Lillo & S. Miccich`e & R. N. Mantegna, 2005. "Sector identification in a set of stock return time series traded at the London Stock Exchange," Papers cond-mat/0508122, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:75:y:2010:i:1:p:40-58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.