IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

  • Ester Pantaleo
  • Michele Tumminello
  • Fabrizio Lillo
  • Rosario Mantegna

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of nine improved covariance estimation procedures using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between the estimation period T and the number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than that obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover, many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary, when short selling is not allowed and T > N, the considered methods are unable to outperform the sample covariance in terms of realized risk, but can give much more diversified portfolios than that obtained with the sample covariance. When T < N, the use of the sample covariance matrix and of the pseudo-inverse gives portfolios with very poor performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

Volume (Year): 11 (2011)
Issue (Month): 7 ()
Pages: 1067-1080

in new window

Handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1067-1080
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1067-1080. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.